Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- ru
|
4 |
+
- uk
|
5 |
+
- be
|
6 |
+
- kk
|
7 |
+
- az
|
8 |
+
- hy
|
9 |
+
- ka
|
10 |
+
- he
|
11 |
+
- en
|
12 |
+
- de
|
13 |
+
tags:
|
14 |
+
- language classification
|
15 |
+
- text segmentation
|
16 |
+
datasets:
|
17 |
+
- open_subtitles
|
18 |
+
- tatoeba
|
19 |
+
- oscar
|
20 |
+
---
|
21 |
+
|
22 |
+
# RoBERTa for Multilabel Language Segmentation
|
23 |
+
## Training
|
24 |
+
RoBERTa fine-tuned on small parts of Open Subtitles, Oscar and Tatoeba datasets (~9k samples per language).
|
25 |
+
|
26 |
+
Implemented heuristic algorithm for multilingual training data creation with generation of target masks- https://github.com/n1kstep/lang-classifier
|
27 |
+
|
28 |
+
| data source | language |
|
29 |
+
|-----------------|----------------|
|
30 |
+
| open_subtitles | ka, he, en, de |
|
31 |
+
| oscar | be, kk, az, hu |
|
32 |
+
| tatoeba | ru, uk |
|
33 |
+
|
34 |
+
## Validation
|
35 |
+
The metrics obtained from validation on the another part of dataset (~1k samples per language).
|
36 |
+
|
37 |
+
| Validation Loss | Precision | Recall | F1-Score | Accuracy |
|
38 |
+
|-----------------|-----------|----------|----------|----------|
|
39 |
+
| 0.029172 | 0.919623 | 0.933586 | 0.926552 | 0.991883 |
|