|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Processor class for MiniCPMV. |
|
""" |
|
|
|
from typing import List, Optional, Union, Dict, Any |
|
import torch |
|
import re |
|
|
|
from transformers.image_processing_utils import BatchFeature |
|
from transformers.image_utils import ImageInput |
|
from transformers.processing_utils import ProcessorMixin |
|
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy |
|
from transformers.utils import TensorType, requires_backends, is_torch_dtype, is_torch_device |
|
|
|
from .image_processing_minicpmv import MiniCPMVBatchFeature |
|
|
|
|
|
class MiniCPMVProcessor(ProcessorMixin): |
|
r""" |
|
Constructs a MiniCPMV processor which wraps a MiniCPMV image processor and a MiniCPMV tokenizer into a single processor. |
|
|
|
[`MiniCPMVProcessor`] offers all the functionalities of [`MiniCPMVImageProcessor`] and [`LlamaTokenizerWrapper`]. See the |
|
[`~MiniCPMVProcessor.__call__`] and [`~MiniCPMVProcessor.decode`] for more information. |
|
|
|
Args: |
|
image_processor ([`MiniCPMVImageProcessor`], *optional*): |
|
The image processor is a required input. |
|
tokenizer ([`LlamaTokenizerWrapper`], *optional*): |
|
The tokenizer is a required input. |
|
""" |
|
attributes = ["image_processor", "tokenizer"] |
|
image_processor_class = "AutoImageProcessor" |
|
tokenizer_class = "AutoTokenizer" |
|
|
|
def __init__(self, image_processor=None, tokenizer=None): |
|
super().__init__(image_processor, tokenizer) |
|
self.version = image_processor.version |
|
|
|
def __call__( |
|
self, |
|
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], |
|
images: ImageInput = None, |
|
max_length: Optional[int] = None, |
|
do_pad: Optional[bool] = True, |
|
max_slice_nums: int = None, |
|
use_image_id: bool = None, |
|
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, |
|
**kwargs |
|
) -> MiniCPMVBatchFeature: |
|
|
|
image_inputs = None |
|
if images is not None: |
|
image_inputs = self.image_processor(images, do_pad=do_pad, max_slice_nums=max_slice_nums, return_tensors=return_tensors) |
|
return self._convert_images_texts_to_inputs(image_inputs, text, max_slice_nums=max_slice_nums, use_image_id=use_image_id, max_length=max_length, **kwargs, return_tensors=return_tensors) |
|
|
|
|
|
def batch_decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please |
|
refer to the docstring of this method for more information. |
|
""" |
|
output_ids = args[0] |
|
result_text = [] |
|
for result in output_ids: |
|
result = result[result != 0] |
|
if result[0] == self.tokenizer.bos_id: |
|
result = result[1:] |
|
if result[-1] == self.tokenizer.eos_id: |
|
result = result[:-1] |
|
result_text.append(self.tokenizer.decode(result, *args[1:], **kwargs).strip()) |
|
return result_text |
|
|
|
|
|
|
|
def decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to |
|
the docstring of this method for more information. |
|
""" |
|
result = args[0] |
|
result = result[result != 0] |
|
if result[0] == self.tokenizer.bos_id: |
|
result = result[1:] |
|
if result[-1] == self.tokenizer.eos_id or (hasattr(self.tokenizer, "eot_id") and result[-1] == self.tokenizer.eot_id): |
|
result = result[:-1] |
|
return self.tokenizer.decode(result, *args[1:], **kwargs).strip() |
|
|
|
def _convert( |
|
self, input_str, max_inp_length: Optional[int] = None |
|
): |
|
if self.version > 2.5 or not getattr(self.tokenizer, "add_bos_token", False): |
|
input_ids = self.tokenizer.encode(input_str) |
|
else: |
|
input_ids = [self.tokenizer.bos_id] + self.tokenizer.encode(input_str) |
|
if max_inp_length is not None: |
|
input_ids = input_ids[:max_inp_length] |
|
input_ids = torch.tensor(input_ids, dtype=torch.int32) |
|
|
|
start_cond = (input_ids == self.tokenizer.im_start_id) | (input_ids == self.tokenizer.slice_start_id) |
|
end_cond = (input_ids == self.tokenizer.im_end_id) | (input_ids == self.tokenizer.slice_end_id) |
|
|
|
image_start_tokens = torch.where(start_cond)[0] |
|
image_start_tokens += 1 |
|
image_end_tokens = torch.where(end_cond)[0] |
|
|
|
valid_image_nums = max(len(image_start_tokens), len(image_end_tokens)) |
|
|
|
image_bounds = torch.hstack( |
|
[ |
|
image_start_tokens[:valid_image_nums].unsqueeze(-1), |
|
image_end_tokens[:valid_image_nums].unsqueeze(-1), |
|
] |
|
) |
|
return input_ids, image_bounds |
|
|
|
def _convert_images_texts_to_inputs( |
|
self, |
|
images, |
|
texts: Union[str, List[str]], |
|
truncation=None, |
|
max_length=None, |
|
max_slice_nums=None, |
|
use_image_id=None, |
|
return_tensors=None, |
|
**kwargs |
|
): |
|
if images is None or not len(images): |
|
model_inputs = self.tokenizer(texts, return_tensors=return_tensors, truncation=truncation, max_length=max_length, **kwargs) |
|
return MiniCPMVBatchFeature(data={**model_inputs}) |
|
|
|
pattern = "(<image>./</image>)" |
|
images, image_sizes, tgt_sizes = images["pixel_values"], images["image_sizes"], images["tgt_sizes"] |
|
|
|
if isinstance(texts, str): |
|
texts = [texts] |
|
input_ids_list = [] |
|
image_bounds_list = [] |
|
for index, text in enumerate(texts): |
|
image_tags = re.findall(pattern, text) |
|
assert len(image_tags) == len(image_sizes[index]) |
|
text_chunks = text.split(pattern) |
|
final_text = "" |
|
for i in range(len(image_tags)): |
|
final_text = final_text + text_chunks[i] + \ |
|
self.image_processor.get_slice_image_placeholder( |
|
image_sizes[index][i], |
|
i, |
|
max_slice_nums, |
|
use_image_id |
|
) |
|
final_text += text_chunks[-1] |
|
input_ids, image_bounds = self._convert(final_text, max_length) |
|
input_ids_list.append(input_ids) |
|
image_bounds_list.append(image_bounds) |
|
padded_input_ids, padding_lengths = self.pad( |
|
input_ids_list, |
|
padding_side="left" |
|
) |
|
for i, length in enumerate(padding_lengths): |
|
image_bounds_list[i] = image_bounds_list[i] + length |
|
attention_mask = padded_input_ids.ne(0) |
|
|
|
return MiniCPMVBatchFeature(data={ |
|
"input_ids": padded_input_ids, |
|
"attention_mask": attention_mask, |
|
"pixel_values": images, |
|
"image_sizes": image_sizes, |
|
"image_bound": image_bounds_list, |
|
"tgt_sizes": tgt_sizes |
|
}) |
|
|
|
@property |
|
|
|
def model_input_names(self): |
|
tokenizer_input_names = self.tokenizer.model_input_names |
|
image_processor_input_names = self.image_processor.model_input_names |
|
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) |
|
|
|
|
|
def pad(self, inputs, max_length=None, padding_value=0, padding_side="left"): |
|
items = [] |
|
if isinstance(inputs[0], list): |
|
assert isinstance(inputs[0][0], torch.Tensor) |
|
for it in inputs: |
|
for tr in it: |
|
items.append(tr) |
|
else: |
|
assert isinstance(inputs[0], torch.Tensor) |
|
items = inputs |
|
|
|
batch_size = len(items) |
|
shape = items[0].shape |
|
dim = len(shape) |
|
assert dim <= 2 |
|
if max_length is None: |
|
max_length = 0 |
|
max_length = max(max_length, max(item.shape[-1] for item in items)) |
|
min_length = min(item.shape[-1] for item in items) |
|
dtype = items[0].dtype |
|
|
|
if dim == 0: |
|
return torch.stack([item for item in items], dim=0), [0] |
|
elif dim == 1: |
|
if max_length == min_length: |
|
return torch.stack([item for item in items], dim=0), [0] * batch_size |
|
tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value |
|
else: |
|
tensor = ( |
|
torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype) |
|
+ padding_value |
|
) |
|
|
|
padding_length = [] |
|
for i, item in enumerate(items): |
|
if dim == 1: |
|
if padding_side == "left": |
|
tensor[i, -len(item) :] = item.clone() |
|
else: |
|
tensor[i, : len(item)] = item.clone() |
|
elif dim == 2: |
|
if padding_side == "left": |
|
tensor[i, -len(item) :, :] = item.clone() |
|
else: |
|
tensor[i, : len(item), :] = item.clone() |
|
padding_length.append(tensor.shape[-1] - len(item)) |
|
|
|
return tensor, padding_length |
|
|