nikbhi's picture
improved model with better neural network
8b54747
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd5cae2cdc0>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd5cae2ce50>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd5cae2cee0>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd5cae2cf70>",
"_build": "<function ActorCriticPolicy._build at 0x7fd5cae2d000>",
"forward": "<function ActorCriticPolicy.forward at 0x7fd5cae2d090>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd5cae2d120>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd5cae2d1b0>",
"_predict": "<function ActorCriticPolicy._predict at 0x7fd5cae2d240>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd5cae2d2d0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd5cae2d360>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd5cae2d3f0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7fd5cae22480>"
},
"verbose": 1,
"policy_kwargs": {
"net_arch": [
{
"pi": [
128,
128,
128,
128
],
"vf": [
128,
128,
128,
128
]
}
]
},
"num_timesteps": 1015808,
"_total_timesteps": 1000000.0,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1690643045613043468,
"learning_rate": 0.0003,
"tensorboard_log": null,
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKAzC76efpQ96HpfPtEOdr4nXvM9+j1FPQAAAAAAAAAATVAWPeE86rrbIhW8mtPRO8s3Ljzw98G8AACAPwAAgD/N4h099rwcumb5ezfUbxgztqe2OxOEkrYAAIA/AACAP3MMwz2UD4I9tntBviaRj74saKa9VnNKPQAAAAAAAAAAcw6oPVRCtj92qzM/9CujvQTGY7uqcDA+AAAAAAAAAADt90U+2P6XPpaMzb7SreC+lcMCvrkUJ70AAAAAAAAAAAAexjzKNhw/Kd+Nu2PPIr/GUBI9Stb8vAAAAAAAAAAAwEEfPs8RSbzi5KA7C9gjutdsr70ftAC7AACAPwAAgD8NpsA9XCNSuou/YjOV7xwsYi8JOpebq7MAAIA/AACAPwCFB76Fg9a7xDUrvDZ7u7rABSo9xw+hOwAAgD8AAIA/AA+IPcMJULrgpPI05uksr7QK3rqGbVS0AACAPwAAgD96Pz6+zys8PrrbNz4/0Ja+46T1vWIZED4AAAAAAAAAAHO0/73u/+89ShFZPhndR77VYEc9x8M7OwAAAAAAAAAAWk6BvV0lsj9vYaC+huCLvvPdDL397Ti+AAAAAAAAAADC6q++8djxPlNVUb3QIzK/oEIMv/2mdTwAAAAAAAAAAOZDob1JZS09ShI7PksNKL7Ch7Y8TCGSOgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"_stats_window_size": 100,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWV5QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQE4prWy1NQGMAWyUS4eMAXSUR0CiAapZGKAKdX2UKGgGR0BHASIgvDgqaAdLXmgIR0CiAdsgU1yedX2UKGgGR0BxwlQSBbwCaAdL4mgIR0CiAf80UGmldX2UKGgGR0BxWbfAKv3baAdLrWgIR0CiAjGwJPZadX2UKGgGR0BxQzg5zYEoaAdLv2gIR0CiAl8dPtUodX2UKGgGR0Bx4abwz+FUaAdLxWgIR0CiAsTN+so2dX2UKGgGR0B0SzuG9HtnaAdL32gIR0CiAulBppN9dX2UKGgGR0BFn0E5hjOLaAdLemgIR0CiAvE/r0J4dX2UKGgGR0ByByHFglWwaAdL7GgIR0CiA0YQJ5VwdX2UKGgGR0Bw7ysJY1YRaAdLvmgIR0CiA1aSLZSOdX2UKGgGR0BxDo4KhL5AaAdLomgIR0CiA6BHLA58dX2UKGgGR0BxvJHqeK8+aAdLsWgIR0CiA/F8G9pRdX2UKGgGR0BxWecvugHvaAdLuWgIR0CiBELftQbddX2UKGgGR0Bw8CAwwj+raAdLxGgIR0CiBE1C5VfedX2UKGgGR0ByNFimVJL/aAdL72gIR0CiBFm7BfrsdX2UKGgGR0ByvM81XNkfaAdL6mgIR0CiBPeHaewtdX2UKGgGR0Bx9jjDKoycaAdLx2gIR0CiBRWQXAM2dX2UKGgGR0ByP2t1ZDAraAdL5GgIR0CiBWCay8jBdX2UKGgGR0Bxv9/QSi/PaAdL0GgIR0CiBV05U96kdX2UKGgGR0BxknPeHi3oaAdLtmgIR0CiBW8Zk079dX2UKGgGR0Bvqe+M6zVuaAdLrGgIR0CiBaVYZEUkdX2UKGgGR0ByCI3bVSXMaAdL2mgIR0CiBfcinpB5dX2UKGgGR0ByImoUBXCCaAdLvmgIR0CiBgBo/RmcdX2UKGgGR0BxA3Y150KaaAdL8mgIR0CiBjV7pmmMdX2UKGgGR0BxVJmz0HyFaAdLwmgIR0CiBm5/b0vodX2UKGgGR0BxqMS+QEIPaAdLjWgIR0CiByFG5MDfdX2UKGgGR0ByHGbqhUR4aAdLy2gIR0CiB1DvE0iydX2UKGgGR0Bx4tWFN+LFaAdL72gIR0CiB4l4C6pYdX2UKGgGR0Bw6JaC+UQkaAdL1GgIR0CiB5WDYh+wdX2UKGgGR0BxozVc2R7raAdLqWgIR0CiCAWCmMwUdX2UKGgGR0BxoByR0U48aAdLwmgIR0CiCCEFwDNhdX2UKGgGR0BxOV4TsY2saAdLyGgIR0CiCIDp1RtQdX2UKGgGR0BxM+yAxzq9aAdLyGgIR0CiCJQztTkydX2UKGgGR0Bw/HKNhmXgaAdNFwFoCEdAogiX40uUU3V9lChoBkdAcimT9KmKqGgHS9loCEdAogkHcHnln3V9lChoBkdAc8RD6WPcSGgHS8hoCEdAogkfwVj7RHV9lChoBkdAcWl1fVqesmgHS65oCEdAogkoood+5XV9lChoBkdAcI/8iOearmgHS89oCEdAogkxjFyaNXV9lChoBkdAcrXZ75VOsWgHS9RoCEdAogmBpDeCTXV9lChoBkdAcHqXOnl4kmgHS5hoCEdAognhFNL13HV9lChoBkdAcjmRvm5lOGgHS7xoCEdAogoQjnmq53V9lChoBkdAca9mu1WsBGgHS8hoCEdAogpvoNd7fHV9lChoBkdAcP8r2g398GgHS6BoCEdAogp9Nvfj0nV9lChoBkdAcSCVPepGWmgHS8poCEdAogq1urIYFnV9lChoBkdAcNeTVUdaMmgHS7FoCEdAogrb3Ehq03V9lChoBkdAciY3sXzlLmgHS6ZoCEdAogsM7hegMHV9lChoBkdAcs2FXaJyhmgHS6toCEdAogs0wztTk3V9lChoBkdAU5dWzWwu/WgHS5JoCEdAogvZMSK3u3V9lChoBkdAcMpKdhAnlWgHS7RoCEdAogvhYYBNmHV9lChoBkdAcjPxgiNbT2gHS8doCEdAogxcy8BdU3V9lChoBkdAb3xoX9BKMGgHS6hoCEdAogybgEU0vXV9lChoBkdAcfJB0IToMmgHS9loCEdAogygLiMo+nV9lChoBkdAcpL0P6KtP2gHS+BoCEdAogyzjLjgh3V9lChoBkdAcxIXcQAdXGgHTQUBaAhHQKIMuJbdJrd1fZQoaAZHQG7k+jua4MFoB0upaAhHQKIN4rNGEwp1fZQoaAZHQHQ732qT8pFoB0u4aAhHQKIN7fiPyTZ1fZQoaAZHQHDUCEYfnwJoB0vCaAhHQKIN8JLM9r51fZQoaAZHQHLZjUiILw5oB0vXaAhHQKIOAtW+49Z1fZQoaAZHQHIu7z5GjKxoB0viaAhHQKIOP4vexfR1fZQoaAZHQHHEB59mYjVoB0u0aAhHQKIOP37DVH51fZQoaAZHQHO21X3g1m9oB00AAWgIR0CiDk6DoQnQdX2UKGgGR0Bv6NXRw6yTaAdLk2gIR0CiDstbkfcOdX2UKGgGR0Bwk0D/2kBTaAdLtWgIR0CiDtwdS2pidX2UKGgGR0BxYJYnv2GqaAdLwGgIR0CiDwHVwxWUdX2UKGgGR0BwKVYJVsDXaAdLmWgIR0CiDxxjJ+2FdX2UKGgGR0BxF49wFTvRaAdLqWgIR0CiD3lz+3pfdX2UKGgGR0BwGLylN1yOaAdLuGgIR0CiD54EfT1DdX2UKGgGR0Bw0L3PAwfyaAdL1GgIR0CiECdxp+MIdX2UKGgGR0ByHDQNTcZcaAdLiGgIR0CiECl4keIVdX2UKGgGR0BykVsMy8BdaAdLqGgIR0CiEJ/c32mIdX2UKGgGR0BwSGWdEsreaAdLvGgIR0CiEPfc32mIdX2UKGgGR0BwmJYjjaPCaAdLs2gIR0CiESEDZDiPdX2UKGgGR0Bjz27e2uxKaAdN6ANoCEdAohF5GnXNDHV9lChoBkdAcydlANXo1WgHS8toCEdAohGceIVM23V9lChoBkdAZS8jSofjj2gHTegDaAhHQKIRpPGACnx1fZQoaAZHQHRq19v0h/1oB0u9aAhHQKISFHEMspZ1fZQoaAZHQHCftfkWAPNoB0vHaAhHQKISFilSCOF1fZQoaAZHQHKK5Grjo6loB0vzaAhHQKISIwsXizd1fZQoaAZHQHEl1zdUKiRoB0ukaAhHQKISIwUQCjl1fZQoaAZHQHGoEYoAn2JoB0t/aAhHQKISMynDR+l1fZQoaAZHQHMjHQID5j9oB0vZaAhHQKISQeyzHCJ1fZQoaAZHQHIg4Ym9g4RoB0u0aAhHQKISb2wmmch1fZQoaAZHQHD68CLdeppoB0veaAhHQKISjL+xW1d1fZQoaAZHQG7R6sQumJpoB0ulaAhHQKISpKmsNlR1fZQoaAZHQHE8lIuoP09oB0uyaAhHQKITb38GcF11fZQoaAZHQHHKBHLA57xoB0vKaAhHQKITfP9DQZ51fZQoaAZHQHEBU1qFh5RoB0uTaAhHQKITjHLidat1fZQoaAZHQHASJ71Iy0toB0ueaAhHQKITjDm8ujB1fZQoaAZHQHAPsHKOktVoB0u1aAhHQKIT/Qla8pV1fZQoaAZHQHG+DHwPRRdoB0udaAhHQKIUJ++/QBx1fZQoaAZHQG6qqFyq+8JoB0upaAhHQKIURPwd8zB1fZQoaAZHQHKcx9kSVW1oB0usaAhHQKIUTm5lOGl1fZQoaAZHQHLHxrFfiP1oB0ukaAhHQKIUUyM1jy51fZQoaAZHQHNJ2bCrLhdoB0vtaAhHQKIUXISUTtd1fZQoaAZHQHBn0e2d/axoB0uxaAhHQKIUbDjzZpV1fZQoaAZHQHAWKNuLrHFoB0u3aAhHQKIU8slLOA11fZQoaAZHQHF7QYDTz/ZoB0vZaAhHQKIVERZlnRN1fZQoaAZHQHG6JXZGrjpoB0vIaAhHQKIVVA57w8Z1fZQoaAZHQHSaR+KCQLhoB0u3aAhHQKIV/ke6qbV1fZQoaAZHQHHIIPoV2zRoB0u7aAhHQKIWHAvcrRV1ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 310,
"observation_space": {
":type:": "<class 'gymnasium.spaces.box.Box'>",
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
"dtype": "float32",
"bounded_below": "[ True True True True True True True True]",
"bounded_above": "[ True True True True True True True True]",
"_shape": [
8
],
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
"n": "4",
"start": "0",
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"n_steps": 2048,
"gamma": 0.99,
"gae_lambda": 0.95,
"ent_coef": 0.0,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 10,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
}
}