nidhinthomas
commited on
Commit
•
f72d639
1
Parent(s):
abaac60
Model save
Browse files
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: facebook/esm2_t12_35M_UR50D
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
model-index:
|
12 |
+
- name: esm2_t12_35M_qlora_glycosylation_sites_2024-02-11_22-11-09
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# esm2_t12_35M_qlora_glycosylation_sites_2024-02-11_22-11-09
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [facebook/esm2_t12_35M_UR50D](https://huggingface.co/facebook/esm2_t12_35M_UR50D) on the None dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.1117
|
24 |
+
- Accuracy: 0.9968
|
25 |
+
- Precision: 0.4831
|
26 |
+
- Recall: 0.9671
|
27 |
+
- F1: 0.6443
|
28 |
+
- Auc: 0.9820
|
29 |
+
- Mcc: 0.6823
|
30 |
+
|
31 |
+
## Model description
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Intended uses & limitations
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training and evaluation data
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training procedure
|
44 |
+
|
45 |
+
### Training hyperparameters
|
46 |
+
|
47 |
+
The following hyperparameters were used during training:
|
48 |
+
- learning_rate: 0.0003701568055793089
|
49 |
+
- train_batch_size: 36
|
50 |
+
- eval_batch_size: 36
|
51 |
+
- seed: 8893
|
52 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
53 |
+
- lr_scheduler_type: cosine
|
54 |
+
- num_epochs: 3
|
55 |
+
- mixed_precision_training: Native AMP
|
56 |
+
|
57 |
+
### Training results
|
58 |
+
|
59 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Auc | Mcc |
|
60 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|:------:|
|
61 |
+
| 0.1789 | 1.0 | 295 | 0.1102 | 0.9962 | 0.4391 | 0.9638 | 0.6034 | 0.9801 | 0.6492 |
|
62 |
+
| 0.0145 | 2.0 | 590 | 0.1105 | 0.9967 | 0.4776 | 0.9663 | 0.6393 | 0.9816 | 0.6782 |
|
63 |
+
| 0.0115 | 3.0 | 885 | 0.1117 | 0.9968 | 0.4831 | 0.9671 | 0.6443 | 0.9820 | 0.6823 |
|
64 |
+
|
65 |
+
|
66 |
+
### Framework versions
|
67 |
+
|
68 |
+
- Transformers 4.35.2
|
69 |
+
- Pytorch 2.1.0+cu121
|
70 |
+
- Datasets 2.17.0
|
71 |
+
- Tokenizers 0.15.1
|