Update README.md
Browse files
README.md
CHANGED
@@ -5,10 +5,15 @@ tags:
|
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
- transformers
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
-
#
|
12 |
|
13 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
|
@@ -26,11 +31,12 @@ Then you can use the model like this:
|
|
26 |
|
27 |
```python
|
28 |
from sentence_transformers import SentenceTransformer
|
29 |
-
sentences = ["
|
30 |
|
31 |
-
model = SentenceTransformer('
|
32 |
embeddings = model.encode(sentences)
|
33 |
print(embeddings)
|
|
|
34 |
```
|
35 |
|
36 |
|
@@ -51,11 +57,11 @@ def mean_pooling(model_output, attention_mask):
|
|
51 |
|
52 |
|
53 |
# Sentences we want sentence embeddings for
|
54 |
-
sentences = ['
|
55 |
|
56 |
# Load model from HuggingFace Hub
|
57 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
58 |
-
model = AutoModel.from_pretrained('
|
59 |
|
60 |
# Tokenize sentences
|
61 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -69,15 +75,14 @@ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']
|
|
69 |
|
70 |
print("Sentence embeddings:")
|
71 |
print(sentence_embeddings)
|
72 |
-
```
|
73 |
-
|
74 |
|
|
|
75 |
|
76 |
## Evaluation Results
|
77 |
|
78 |
<!--- Describe how your model was evaluated -->
|
79 |
|
80 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=
|
81 |
|
82 |
|
83 |
## Training
|
@@ -119,8 +124,4 @@ SentenceTransformer(
|
|
119 |
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
120 |
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
121 |
)
|
122 |
-
```
|
123 |
-
|
124 |
-
## Citing & Authors
|
125 |
-
|
126 |
-
<!--- Describe where people can find more information -->
|
|
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
- transformers
|
8 |
+
license: mit
|
9 |
+
datasets:
|
10 |
+
- stsb_multi_mt
|
11 |
+
language:
|
12 |
+
- it
|
13 |
+
library_name: sentence-transformers
|
14 |
---
|
15 |
|
16 |
+
# sentence-bert-base-italian-uncased
|
17 |
|
18 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
19 |
|
|
|
31 |
|
32 |
```python
|
33 |
from sentence_transformers import SentenceTransformer
|
34 |
+
sentences = ["Una ragazza si acconcia i capelli.", "Una ragazza si sta spazzolando i capelli."]
|
35 |
|
36 |
+
model = SentenceTransformer('nickprock/sentence-bert-base-italian-uncased')
|
37 |
embeddings = model.encode(sentences)
|
38 |
print(embeddings)
|
39 |
+
|
40 |
```
|
41 |
|
42 |
|
|
|
57 |
|
58 |
|
59 |
# Sentences we want sentence embeddings for
|
60 |
+
sentences = ['Una ragazza si acconcia i capelli.', 'Una ragazza si sta spazzolando i capelli.']
|
61 |
|
62 |
# Load model from HuggingFace Hub
|
63 |
+
tokenizer = AutoTokenizer.from_pretrained('nickprock/sentence-bert-base-italian-uncased')
|
64 |
+
model = AutoModel.from_pretrained('nickprock/sentence-bert-base-italian-uncased')
|
65 |
|
66 |
# Tokenize sentences
|
67 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
75 |
|
76 |
print("Sentence embeddings:")
|
77 |
print(sentence_embeddings)
|
|
|
|
|
78 |
|
79 |
+
```
|
80 |
|
81 |
## Evaluation Results
|
82 |
|
83 |
<!--- Describe how your model was evaluated -->
|
84 |
|
85 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=nickprock/sentence-bert-base-italian-uncased)
|
86 |
|
87 |
|
88 |
## Training
|
|
|
124 |
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
125 |
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
126 |
)
|
127 |
+
```
|
|
|
|
|
|
|
|