Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.43 +/- 0.65
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:65b04e2e47cae0f98e6d63df615e098539a19657f70c63959ea5039ee0ff45dc
|
3 |
+
size 108048
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3fc6c8fbe0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f3fc6c8aac0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1676383270249874180,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVzwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMTi9ob21lL2dwdS8udmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMTi9ob21lL2dwdS8udmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA+EzAPgkrmjy7bQs/+EzAPgkrmjy7bQs/+EzAPgkrmjy7bQs/+EzAPgkrmjy7bQs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4xSmvr3Nxr+zHcK/EiLVvpaxij/nH8a/YnrUv9AYwL9ax4c/g/B9v5Iflr/cTcY/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD4TMA+CSuaPLttCz/l4C08xRxyOwf1/jv4TMA+CSuaPLttCz/l4C08xRxyOwf1/jv4TMA+CSuaPLttCz/l4C08xRxyOwf1/jv4TMA+CSuaPLttCz/l4C08xRxyOwf1/juUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.37558722 0.01881935 0.5446431 ]\n [0.37558722 0.01881935 0.5446431 ]\n [0.37558722 0.01881935 0.5446431 ]\n [0.37558722 0.01881935 0.5446431 ]]",
|
60 |
+
"desired_goal": "[[-0.3243781 -1.5531536 -1.5165313 ]\n [-0.41627556 1.0835445 -1.5478486 ]\n [-1.6599848 -1.5007572 1.0607712 ]\n [-0.99195117 -1.1728384 1.5492511 ]]",
|
61 |
+
"observation": "[[0.37558722 0.01881935 0.5446431 0.0106127 0.00369434 0.00778067]\n [0.37558722 0.01881935 0.5446431 0.0106127 0.00369434 0.00778067]\n [0.37558722 0.01881935 0.5446431 0.0106127 0.00369434 0.00778067]\n [0.37558722 0.01881935 0.5446431 0.0106127 0.00369434 0.00778067]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAARak2vV/o7j0x4YM+KFF9vWClML3qHrs9J3TIPIFvRr12R4c+iFATvebtgDvL3I0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.04459502 0.11665415 0.25757745]\n [-0.06184497 -0.04312646 0.09136756]\n [ 0.02446945 -0.04844618 0.26421708]\n [-0.03596547 0.00393461 0.27707514]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIba0vEtpy7L+UhpRSlIwBbJRLMowBdJRHQJ2kq1lXiit1fZQoaAZoCWgPQwivXG+bqRD4v5SGlFKUaBVLMmgWR0CdpGEsrd30dX2UKGgGaAloD0MIA2A8g4a+8r+UhpRSlGgVSzJoFkdAnaQTF+/gznV9lChoBmgJaA9DCBea6zTSUv+/lIaUUpRoFUsyaBZHQJ2jxSaVlf91fZQoaAZoCWgPQwjG20qvzcb7v5SGlFKUaBVLMmgWR0Cdpi0LMLWqdX2UKGgGaAloD0MIvalIhbEF6L+UhpRSlGgVSzJoFkdAnaXi5RTCL3V9lChoBmgJaA9DCFoqb0c4bfW/lIaUUpRoFUsyaBZHQJ2llNwiqyZ1fZQoaAZoCWgPQwizzY3pCUvhv5SGlFKUaBVLMmgWR0CdpUb4rSVodX2UKGgGaAloD0MIVKcDWU/t/7+UhpRSlGgVSzJoFkdAnaey5d4VynV9lChoBmgJaA9DCNApyM9Grve/lIaUUpRoFUsyaBZHQJ2naLYPGyZ1fZQoaAZoCWgPQwjXbVD7rd33v5SGlFKUaBVLMmgWR0CdpxqWTot+dX2UKGgGaAloD0MIelORCmNL9b+UhpRSlGgVSzJoFkdAnabMoDxLCnV9lChoBmgJaA9DCBb2tMNfE/G/lIaUUpRoFUsyaBZHQJ2pMyIpH7R1fZQoaAZoCWgPQwitS43Qz9T0v5SGlFKUaBVLMmgWR0CdqOjyWiUQdX2UKGgGaAloD0MIem6hKxGoBsCUhpRSlGgVSzJoFkdAnaia8xsVL3V9lChoBmgJaA9DCO8CJQUWYAHAlIaUUpRoFUsyaBZHQJ2oTRoh6jZ1fZQoaAZoCWgPQwgYPiKmRNL2v5SGlFKUaBVLMmgWR0CdqrWU8mrsdX2UKGgGaAloD0MI+ROVDWsq8L+UhpRSlGgVSzJoFkdAnaprXDm8unV9lChoBmgJaA9DCCefHtsy4O2/lIaUUpRoFUsyaBZHQJ2qHVXmvGJ1fZQoaAZoCWgPQwhEw2LUtfbuv5SGlFKUaBVLMmgWR0Cdqc9qk/KRdX2UKGgGaAloD0MIwJSBA1qaAMCUhpRSlGgVSzJoFkdAnaxBdyDIzXV9lChoBmgJaA9DCKH2WztREuS/lIaUUpRoFUsyaBZHQJ2r90knkT91fZQoaAZoCWgPQwg8TWa8rXT2v5SGlFKUaBVLMmgWR0Cdq6lBhQWOdX2UKGgGaAloD0MIg9pv7UQJ97+UhpRSlGgVSzJoFkdAnatbRjSXt3V9lChoBmgJaA9DCCDtf4C16uG/lIaUUpRoFUsyaBZHQJ2tx33YcvN1fZQoaAZoCWgPQwi5cvbOaCsBwJSGlFKUaBVLMmgWR0CdrX1R+BpYdX2UKGgGaAloD0MIlkOLbOd75r+UhpRSlGgVSzJoFkdAna0vetSydHV9lChoBmgJaA9DCKZ+3lSkQvq/lIaUUpRoFUsyaBZHQJ2s4eIVM251fZQoaAZoCWgPQwjkhXR4COPrv5SGlFKUaBVLMmgWR0Cdrzdepn6EdX2UKGgGaAloD0MIrye6Lvwg+L+UhpRSlGgVSzJoFkdAna7tAHE/B3V9lChoBmgJaA9DCJV9VwT/2/y/lIaUUpRoFUsyaBZHQJ2unvPTodN1fZQoaAZoCWgPQwhVwD3Pn7b3v5SGlFKUaBVLMmgWR0CdrlEPUaybdX2UKGgGaAloD0MIf4P26uMh9L+UhpRSlGgVSzJoFkdAnbCiyQgcLnV9lChoBmgJaA9DCAKAY8+eS/i/lIaUUpRoFUsyaBZHQJ2wWIO6NER1fZQoaAZoCWgPQwh06spneZ7lv5SGlFKUaBVLMmgWR0CdsAouf29MdX2UKGgGaAloD0MIUMJM27+y7L+UhpRSlGgVSzJoFkdAna+8JUo8ZHV9lChoBmgJaA9DCOSghJm2f/6/lIaUUpRoFUsyaBZHQJ2yCLMs6JZ1fZQoaAZoCWgPQwjBGmfTEcDlv5SGlFKUaBVLMmgWR0Cdsb5yEL6UdX2UKGgGaAloD0MI+1dWmpRC/r+UhpRSlGgVSzJoFkdAnbFwHeJpFnV9lChoBmgJaA9DCI6R7BFqRgPAlIaUUpRoFUsyaBZHQJ2xIhllK9R1fZQoaAZoCWgPQwi3YRQEj2/sv5SGlFKUaBVLMmgWR0Cds3wMpgCwdX2UKGgGaAloD0MIAhJNoIiF9r+UhpRSlGgVSzJoFkdAnbMx2nsLOXV9lChoBmgJaA9DCP8h/fZ1oPC/lIaUUpRoFUsyaBZHQJ2y47Rv3rV1fZQoaAZoCWgPQwjECrd8JKX6v5SGlFKUaBVLMmgWR0CdspXokiUxdX2UKGgGaAloD0MI43FRLSJqBMCUhpRSlGgVSzJoFkdAnbT64hEBsHV9lChoBmgJaA9DCJq0qbpHNuy/lIaUUpRoFUsyaBZHQJ20sHt4RmN1fZQoaAZoCWgPQwjRdkzdld3gv5SGlFKUaBVLMmgWR0CdtGJ1JUYLdX2UKGgGaAloD0MIjjulg/X/97+UhpRSlGgVSzJoFkdAnbQUdBBzFXV9lChoBmgJaA9DCAPRkzKpYfe/lIaUUpRoFUsyaBZHQJ22dazNUwV1fZQoaAZoCWgPQwhT51Hxf0fpv5SGlFKUaBVLMmgWR0CdtiuAqd6LdX2UKGgGaAloD0MIAK358ZdW9L+UhpRSlGgVSzJoFkdAnbXdVBD5TXV9lChoBmgJaA9DCNjSo6mejPK/lIaUUpRoFUsyaBZHQJ21j1+RYA91fZQoaAZoCWgPQwjeVnptNlb6v5SGlFKUaBVLMmgWR0Cdt/gUlAu7dX2UKGgGaAloD0MIBORLqOCwAcCUhpRSlGgVSzJoFkdAnbet3fQ8fXV9lChoBmgJaA9DCLzoK0gzlve/lIaUUpRoFUsyaBZHQJ23X6zmfXh1fZQoaAZoCWgPQwj2zmirkkjiv5SGlFKUaBVLMmgWR0CdtxGmk30gdX2UKGgGaAloD0MIz4HlCBlI9L+UhpRSlGgVSzJoFkdAnbl3Him2s3V9lChoBmgJaA9DCOLmVDIAFPW/lIaUUpRoFUsyaBZHQJ25LOHFglZ1fZQoaAZoCWgPQwiA7suZ7Ur6v5SGlFKUaBVLMmgWR0CduN7UG3WndX2UKGgGaAloD0MIGCZTBaPS9r+UhpRSlGgVSzJoFkdAnbiQ4n4O+nV9lChoBmgJaA9DCMuFyr+WV96/lIaUUpRoFUsyaBZHQJ26/IyTINp1fZQoaAZoCWgPQwhn8PeL2ZL8v5SGlFKUaBVLMmgWR0CdurJFLFn7dX2UKGgGaAloD0MIRdYaSu1lA8CUhpRSlGgVSzJoFkdAnbpkFwDNhXV9lChoBmgJaA9DCNdNKa+V0Nq/lIaUUpRoFUsyaBZHQJ26Fh4MWoF1fZQoaAZoCWgPQwjGpL+XwmMAwJSGlFKUaBVLMmgWR0CdvHdSEUTMdX2UKGgGaAloD0MICrq9pDHa9L+UhpRSlGgVSzJoFkdAnbwtFBppOHV9lChoBmgJaA9DCEc+r3jqEea/lIaUUpRoFUsyaBZHQJ273ww0wal1fZQoaAZoCWgPQwhjm1Q01n7wv5SGlFKUaBVLMmgWR0Cdu5D3ueBhdX2UKGgGaAloD0MIoyJOJ9mqAcCUhpRSlGgVSzJoFkdAnb3tpdrwfHV9lChoBmgJaA9DCDF4mPbNPfm/lIaUUpRoFUsyaBZHQJ29o3BHkLh1fZQoaAZoCWgPQwhSJ6CJsOHuv5SGlFKUaBVLMmgWR0CdvVVT72tddX2UKGgGaAloD0MI+PwwQng047+UhpRSlGgVSzJoFkdAnb0HbM5fdHV9lChoBmgJaA9DCMR8eQH2Ue2/lIaUUpRoFUsyaBZHQJ2/acd5prV1fZQoaAZoCWgPQwj2evfHe7UBwJSGlFKUaBVLMmgWR0Cdvx+ZgG8mdX2UKGgGaAloD0MI5DEDlfHv37+UhpRSlGgVSzJoFkdAnb7RjBl+VnV9lChoBmgJaA9DCP/MID6wI/a/lIaUUpRoFUsyaBZHQJ2+g6vJRwZ1fZQoaAZoCWgPQwgddAmH3uL/v5SGlFKUaBVLMmgWR0CdwO7K7qY7dX2UKGgGaAloD0MIdlJflnZq77+UhpRSlGgVSzJoFkdAncCkqUeMh3V9lChoBmgJaA9DCEEMdO0L6Pu/lIaUUpRoFUsyaBZHQJ3AVpvgm7d1fZQoaAZoCWgPQwi4sG68OzLjv5SGlFKUaBVLMmgWR0CdwAiiItUXdX2UKGgGaAloD0MI3A4Ni1HX8r+UhpRSlGgVSzJoFkdAncJ5fYzzmXV9lChoBmgJaA9DCATI0LGDqgDAlIaUUpRoFUsyaBZHQJ3CL0e2d/d1fZQoaAZoCWgPQwj2lnK+2Pvxv5SGlFKUaBVLMmgWR0CdweE87p3YdX2UKGgGaAloD0MIY15HHLLB8L+UhpRSlGgVSzJoFkdAncGTSPU8WHV9lChoBmgJaA9DCIlBYOXQwgPAlIaUUpRoFUsyaBZHQJ3D/RRdhRZ1fZQoaAZoCWgPQwi7YHDNHf3Yv5SGlFKUaBVLMmgWR0Cdw7LMcIZ7dX2UKGgGaAloD0MI3ewPlNs297+UhpRSlGgVSzJoFkdAncNkz41xbXV9lChoBmgJaA9DCOpCrP4IQ+W/lIaUUpRoFUsyaBZHQJ3DFupCKJl1fZQoaAZoCWgPQwhAS1ewjbgAwJSGlFKUaBVLMmgWR0CdxXxxT850dX2UKGgGaAloD0MIsCDNWDQd67+UhpRSlGgVSzJoFkdAncUyJ0nw5XV9lChoBmgJaA9DCLu5+NueoPC/lIaUUpRoFUsyaBZHQJ3E5CgK4QV1fZQoaAZoCWgPQwhPWyOCcXDnv5SGlFKUaBVLMmgWR0CdxJZKFqSHdX2UKGgGaAloD0MIED//PXit+7+UhpRSlGgVSzJoFkdAncb2ZiNKiHV9lChoBmgJaA9DCAH5Eio4vOi/lIaUUpRoFUsyaBZHQJ3GrCCSRr91fZQoaAZoCWgPQwie7jzxnK3zv5SGlFKUaBVLMmgWR0Cdxl31jAi3dX2UKGgGaAloD0MIOzYC8bpeAMCUhpRSlGgVSzJoFkdAncYP1g6U7nV9lChoBmgJaA9DCGL2su209QLAlIaUUpRoFUsyaBZHQJ3Idvl2eQN1fZQoaAZoCWgPQwibO/pfrsXqv5SGlFKUaBVLMmgWR0CdyCy1eBxxdX2UKGgGaAloD0MI1PGYgcp44r+UhpRSlGgVSzJoFkdAncfelwcYInV9lChoBmgJaA9DCJoK8Ui8vPu/lIaUUpRoFUsyaBZHQJ3HkKw6hg51ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28dbe1bce48881fdd52682adc90069dc6232c77ff48926c065c3bfbb20acb245
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:99dddda5065756743e049fb517d61fe49d953909df203d2b29dc4411ef21335d
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Wed Mar 2 00:30:59 UTC 2022
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.2
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3fc6c8fbe0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3fc6c8aac0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676383270249874180, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVzwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMTi9ob21lL2dwdS8udmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMTi9ob21lL2dwdS8udmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA+EzAPgkrmjy7bQs/+EzAPgkrmjy7bQs/+EzAPgkrmjy7bQs/+EzAPgkrmjy7bQs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4xSmvr3Nxr+zHcK/EiLVvpaxij/nH8a/YnrUv9AYwL9ax4c/g/B9v5Iflr/cTcY/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD4TMA+CSuaPLttCz/l4C08xRxyOwf1/jv4TMA+CSuaPLttCz/l4C08xRxyOwf1/jv4TMA+CSuaPLttCz/l4C08xRxyOwf1/jv4TMA+CSuaPLttCz/l4C08xRxyOwf1/juUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.37558722 0.01881935 0.5446431 ]\n [0.37558722 0.01881935 0.5446431 ]\n [0.37558722 0.01881935 0.5446431 ]\n [0.37558722 0.01881935 0.5446431 ]]", "desired_goal": "[[-0.3243781 -1.5531536 -1.5165313 ]\n [-0.41627556 1.0835445 -1.5478486 ]\n [-1.6599848 -1.5007572 1.0607712 ]\n [-0.99195117 -1.1728384 1.5492511 ]]", "observation": "[[0.37558722 0.01881935 0.5446431 0.0106127 0.00369434 0.00778067]\n [0.37558722 0.01881935 0.5446431 0.0106127 0.00369434 0.00778067]\n [0.37558722 0.01881935 0.5446431 0.0106127 0.00369434 0.00778067]\n [0.37558722 0.01881935 0.5446431 0.0106127 0.00369434 0.00778067]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAARak2vV/o7j0x4YM+KFF9vWClML3qHrs9J3TIPIFvRr12R4c+iFATvebtgDvL3I0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.04459502 0.11665415 0.25757745]\n [-0.06184497 -0.04312646 0.09136756]\n [ 0.02446945 -0.04844618 0.26421708]\n [-0.03596547 0.00393461 0.27707514]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIba0vEtpy7L+UhpRSlIwBbJRLMowBdJRHQJ2kq1lXiit1fZQoaAZoCWgPQwivXG+bqRD4v5SGlFKUaBVLMmgWR0CdpGEsrd30dX2UKGgGaAloD0MIA2A8g4a+8r+UhpRSlGgVSzJoFkdAnaQTF+/gznV9lChoBmgJaA9DCBea6zTSUv+/lIaUUpRoFUsyaBZHQJ2jxSaVlf91fZQoaAZoCWgPQwjG20qvzcb7v5SGlFKUaBVLMmgWR0Cdpi0LMLWqdX2UKGgGaAloD0MIvalIhbEF6L+UhpRSlGgVSzJoFkdAnaXi5RTCL3V9lChoBmgJaA9DCFoqb0c4bfW/lIaUUpRoFUsyaBZHQJ2llNwiqyZ1fZQoaAZoCWgPQwizzY3pCUvhv5SGlFKUaBVLMmgWR0CdpUb4rSVodX2UKGgGaAloD0MIVKcDWU/t/7+UhpRSlGgVSzJoFkdAnaey5d4VynV9lChoBmgJaA9DCNApyM9Grve/lIaUUpRoFUsyaBZHQJ2naLYPGyZ1fZQoaAZoCWgPQwjXbVD7rd33v5SGlFKUaBVLMmgWR0CdpxqWTot+dX2UKGgGaAloD0MIelORCmNL9b+UhpRSlGgVSzJoFkdAnabMoDxLCnV9lChoBmgJaA9DCBb2tMNfE/G/lIaUUpRoFUsyaBZHQJ2pMyIpH7R1fZQoaAZoCWgPQwitS43Qz9T0v5SGlFKUaBVLMmgWR0CdqOjyWiUQdX2UKGgGaAloD0MIem6hKxGoBsCUhpRSlGgVSzJoFkdAnaia8xsVL3V9lChoBmgJaA9DCO8CJQUWYAHAlIaUUpRoFUsyaBZHQJ2oTRoh6jZ1fZQoaAZoCWgPQwgYPiKmRNL2v5SGlFKUaBVLMmgWR0CdqrWU8mrsdX2UKGgGaAloD0MI+ROVDWsq8L+UhpRSlGgVSzJoFkdAnaprXDm8unV9lChoBmgJaA9DCCefHtsy4O2/lIaUUpRoFUsyaBZHQJ2qHVXmvGJ1fZQoaAZoCWgPQwhEw2LUtfbuv5SGlFKUaBVLMmgWR0Cdqc9qk/KRdX2UKGgGaAloD0MIwJSBA1qaAMCUhpRSlGgVSzJoFkdAnaxBdyDIzXV9lChoBmgJaA9DCKH2WztREuS/lIaUUpRoFUsyaBZHQJ2r90knkT91fZQoaAZoCWgPQwg8TWa8rXT2v5SGlFKUaBVLMmgWR0Cdq6lBhQWOdX2UKGgGaAloD0MIg9pv7UQJ97+UhpRSlGgVSzJoFkdAnatbRjSXt3V9lChoBmgJaA9DCCDtf4C16uG/lIaUUpRoFUsyaBZHQJ2tx33YcvN1fZQoaAZoCWgPQwi5cvbOaCsBwJSGlFKUaBVLMmgWR0CdrX1R+BpYdX2UKGgGaAloD0MIlkOLbOd75r+UhpRSlGgVSzJoFkdAna0vetSydHV9lChoBmgJaA9DCKZ+3lSkQvq/lIaUUpRoFUsyaBZHQJ2s4eIVM251fZQoaAZoCWgPQwjkhXR4COPrv5SGlFKUaBVLMmgWR0Cdrzdepn6EdX2UKGgGaAloD0MIrye6Lvwg+L+UhpRSlGgVSzJoFkdAna7tAHE/B3V9lChoBmgJaA9DCJV9VwT/2/y/lIaUUpRoFUsyaBZHQJ2unvPTodN1fZQoaAZoCWgPQwhVwD3Pn7b3v5SGlFKUaBVLMmgWR0CdrlEPUaybdX2UKGgGaAloD0MIf4P26uMh9L+UhpRSlGgVSzJoFkdAnbCiyQgcLnV9lChoBmgJaA9DCAKAY8+eS/i/lIaUUpRoFUsyaBZHQJ2wWIO6NER1fZQoaAZoCWgPQwh06spneZ7lv5SGlFKUaBVLMmgWR0CdsAouf29MdX2UKGgGaAloD0MIUMJM27+y7L+UhpRSlGgVSzJoFkdAna+8JUo8ZHV9lChoBmgJaA9DCOSghJm2f/6/lIaUUpRoFUsyaBZHQJ2yCLMs6JZ1fZQoaAZoCWgPQwjBGmfTEcDlv5SGlFKUaBVLMmgWR0Cdsb5yEL6UdX2UKGgGaAloD0MI+1dWmpRC/r+UhpRSlGgVSzJoFkdAnbFwHeJpFnV9lChoBmgJaA9DCI6R7BFqRgPAlIaUUpRoFUsyaBZHQJ2xIhllK9R1fZQoaAZoCWgPQwi3YRQEj2/sv5SGlFKUaBVLMmgWR0Cds3wMpgCwdX2UKGgGaAloD0MIAhJNoIiF9r+UhpRSlGgVSzJoFkdAnbMx2nsLOXV9lChoBmgJaA9DCP8h/fZ1oPC/lIaUUpRoFUsyaBZHQJ2y47Rv3rV1fZQoaAZoCWgPQwjECrd8JKX6v5SGlFKUaBVLMmgWR0CdspXokiUxdX2UKGgGaAloD0MI43FRLSJqBMCUhpRSlGgVSzJoFkdAnbT64hEBsHV9lChoBmgJaA9DCJq0qbpHNuy/lIaUUpRoFUsyaBZHQJ20sHt4RmN1fZQoaAZoCWgPQwjRdkzdld3gv5SGlFKUaBVLMmgWR0CdtGJ1JUYLdX2UKGgGaAloD0MIjjulg/X/97+UhpRSlGgVSzJoFkdAnbQUdBBzFXV9lChoBmgJaA9DCAPRkzKpYfe/lIaUUpRoFUsyaBZHQJ22dazNUwV1fZQoaAZoCWgPQwhT51Hxf0fpv5SGlFKUaBVLMmgWR0CdtiuAqd6LdX2UKGgGaAloD0MIAK358ZdW9L+UhpRSlGgVSzJoFkdAnbXdVBD5TXV9lChoBmgJaA9DCNjSo6mejPK/lIaUUpRoFUsyaBZHQJ21j1+RYA91fZQoaAZoCWgPQwjeVnptNlb6v5SGlFKUaBVLMmgWR0Cdt/gUlAu7dX2UKGgGaAloD0MIBORLqOCwAcCUhpRSlGgVSzJoFkdAnbet3fQ8fXV9lChoBmgJaA9DCLzoK0gzlve/lIaUUpRoFUsyaBZHQJ23X6zmfXh1fZQoaAZoCWgPQwj2zmirkkjiv5SGlFKUaBVLMmgWR0CdtxGmk30gdX2UKGgGaAloD0MIz4HlCBlI9L+UhpRSlGgVSzJoFkdAnbl3Him2s3V9lChoBmgJaA9DCOLmVDIAFPW/lIaUUpRoFUsyaBZHQJ25LOHFglZ1fZQoaAZoCWgPQwiA7suZ7Ur6v5SGlFKUaBVLMmgWR0CduN7UG3WndX2UKGgGaAloD0MIGCZTBaPS9r+UhpRSlGgVSzJoFkdAnbiQ4n4O+nV9lChoBmgJaA9DCMuFyr+WV96/lIaUUpRoFUsyaBZHQJ26/IyTINp1fZQoaAZoCWgPQwhn8PeL2ZL8v5SGlFKUaBVLMmgWR0CdurJFLFn7dX2UKGgGaAloD0MIRdYaSu1lA8CUhpRSlGgVSzJoFkdAnbpkFwDNhXV9lChoBmgJaA9DCNdNKa+V0Nq/lIaUUpRoFUsyaBZHQJ26Fh4MWoF1fZQoaAZoCWgPQwjGpL+XwmMAwJSGlFKUaBVLMmgWR0CdvHdSEUTMdX2UKGgGaAloD0MICrq9pDHa9L+UhpRSlGgVSzJoFkdAnbwtFBppOHV9lChoBmgJaA9DCEc+r3jqEea/lIaUUpRoFUsyaBZHQJ273ww0wal1fZQoaAZoCWgPQwhjm1Q01n7wv5SGlFKUaBVLMmgWR0Cdu5D3ueBhdX2UKGgGaAloD0MIoyJOJ9mqAcCUhpRSlGgVSzJoFkdAnb3tpdrwfHV9lChoBmgJaA9DCDF4mPbNPfm/lIaUUpRoFUsyaBZHQJ29o3BHkLh1fZQoaAZoCWgPQwhSJ6CJsOHuv5SGlFKUaBVLMmgWR0CdvVVT72tddX2UKGgGaAloD0MI+PwwQng047+UhpRSlGgVSzJoFkdAnb0HbM5fdHV9lChoBmgJaA9DCMR8eQH2Ue2/lIaUUpRoFUsyaBZHQJ2/acd5prV1fZQoaAZoCWgPQwj2evfHe7UBwJSGlFKUaBVLMmgWR0Cdvx+ZgG8mdX2UKGgGaAloD0MI5DEDlfHv37+UhpRSlGgVSzJoFkdAnb7RjBl+VnV9lChoBmgJaA9DCP/MID6wI/a/lIaUUpRoFUsyaBZHQJ2+g6vJRwZ1fZQoaAZoCWgPQwgddAmH3uL/v5SGlFKUaBVLMmgWR0CdwO7K7qY7dX2UKGgGaAloD0MIdlJflnZq77+UhpRSlGgVSzJoFkdAncCkqUeMh3V9lChoBmgJaA9DCEEMdO0L6Pu/lIaUUpRoFUsyaBZHQJ3AVpvgm7d1fZQoaAZoCWgPQwi4sG68OzLjv5SGlFKUaBVLMmgWR0CdwAiiItUXdX2UKGgGaAloD0MI3A4Ni1HX8r+UhpRSlGgVSzJoFkdAncJ5fYzzmXV9lChoBmgJaA9DCATI0LGDqgDAlIaUUpRoFUsyaBZHQJ3CL0e2d/d1fZQoaAZoCWgPQwj2lnK+2Pvxv5SGlFKUaBVLMmgWR0CdweE87p3YdX2UKGgGaAloD0MIY15HHLLB8L+UhpRSlGgVSzJoFkdAncGTSPU8WHV9lChoBmgJaA9DCIlBYOXQwgPAlIaUUpRoFUsyaBZHQJ3D/RRdhRZ1fZQoaAZoCWgPQwi7YHDNHf3Yv5SGlFKUaBVLMmgWR0Cdw7LMcIZ7dX2UKGgGaAloD0MI3ewPlNs297+UhpRSlGgVSzJoFkdAncNkz41xbXV9lChoBmgJaA9DCOpCrP4IQ+W/lIaUUpRoFUsyaBZHQJ3DFupCKJl1fZQoaAZoCWgPQwhAS1ewjbgAwJSGlFKUaBVLMmgWR0CdxXxxT850dX2UKGgGaAloD0MIsCDNWDQd67+UhpRSlGgVSzJoFkdAncUyJ0nw5XV9lChoBmgJaA9DCLu5+NueoPC/lIaUUpRoFUsyaBZHQJ3E5CgK4QV1fZQoaAZoCWgPQwhPWyOCcXDnv5SGlFKUaBVLMmgWR0CdxJZKFqSHdX2UKGgGaAloD0MIED//PXit+7+UhpRSlGgVSzJoFkdAncb2ZiNKiHV9lChoBmgJaA9DCAH5Eio4vOi/lIaUUpRoFUsyaBZHQJ3GrCCSRr91fZQoaAZoCWgPQwie7jzxnK3zv5SGlFKUaBVLMmgWR0Cdxl31jAi3dX2UKGgGaAloD0MIOzYC8bpeAMCUhpRSlGgVSzJoFkdAncYP1g6U7nV9lChoBmgJaA9DCGL2su209QLAlIaUUpRoFUsyaBZHQJ3Idvl2eQN1fZQoaAZoCWgPQwibO/pfrsXqv5SGlFKUaBVLMmgWR0CdyCy1eBxxdX2UKGgGaAloD0MI1PGYgcp44r+UhpRSlGgVSzJoFkdAncfelwcYInV9lChoBmgJaA9DCJoK8Ui8vPu/lIaUUpRoFUsyaBZHQJ3HkKw6hg51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Wed Mar 2 00:30:59 UTC 2022", "Python": "3.10.6", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.2", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (347 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.4322387938387693, "std_reward": 0.6530069970884443, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-14T14:39:49.307644"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:569b0b1914ae6c376fa3106e434836c4b6e297cf7705ccb77571236be7e7b81c
|
3 |
+
size 3273
|