nguyenvulebinh
commited on
Commit
·
b2f67be
1
Parent(s):
58bc514
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
---
|
6 |
+
|
7 |
+
### English ASR sequence-to-sequence model. This model supports output normalizing text, labeling timestamps, and segmenting multiple speakers.
|
8 |
+
|
9 |
+
|
10 |
+
```python
|
11 |
+
# !pip install transformers sentencepiece
|
12 |
+
|
13 |
+
from transformers import SpeechEncoderDecoderModel
|
14 |
+
from transformers import AutoFeatureExtractor, AutoTokenizer, GenerationConfig
|
15 |
+
import torchaudio
|
16 |
+
import torch
|
17 |
+
|
18 |
+
model_path = 'nguyenvulebinh/wav2vec2-bartpho'
|
19 |
+
model = SpeechEncoderDecoderModel.from_pretrained(model_path).eval()
|
20 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(model_path)
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
22 |
+
if torch.cuda.is_available():
|
23 |
+
model = model.cuda()
|
24 |
+
|
25 |
+
|
26 |
+
def decode_tokens(token_ids, skip_special_tokens=True, time_precision=0.02):
|
27 |
+
timestamp_begin = tokenizer.vocab_size
|
28 |
+
outputs = [[]]
|
29 |
+
for token in token_ids:
|
30 |
+
if token >= timestamp_begin:
|
31 |
+
timestamp = f" |{(token - timestamp_begin) * time_precision:.2f}| "
|
32 |
+
outputs.append(timestamp)
|
33 |
+
outputs.append([])
|
34 |
+
else:
|
35 |
+
outputs[-1].append(token)
|
36 |
+
outputs = [
|
37 |
+
s if isinstance(s, str) else tokenizer.decode(s, skip_special_tokens=skip_special_tokens) for s in outputs
|
38 |
+
]
|
39 |
+
return "".join(outputs).replace("< |", "<|").replace("| >", "|>")
|
40 |
+
|
41 |
+
def decode_wav(audio_wavs, asr_model, prefix=""):
|
42 |
+
device = next(asr_model.parameters()).device
|
43 |
+
input_values = feature_extractor.pad(
|
44 |
+
[{"input_values": feature} for feature in audio_wavs],
|
45 |
+
padding=True,
|
46 |
+
max_length=None,
|
47 |
+
pad_to_multiple_of=None,
|
48 |
+
return_tensors="pt",
|
49 |
+
)
|
50 |
+
|
51 |
+
output_beam_ids = asr_model.generate(
|
52 |
+
input_values['input_values'].to(device),
|
53 |
+
attention_mask=input_values['attention_mask'].to(device),
|
54 |
+
decoder_input_ids=tokenizer.batch_encode_plus([prefix] * len(audio_wavs), return_tensors="pt")['input_ids'][..., :-1].to(device),
|
55 |
+
generation_config=GenerationConfig(decoder_start_token_id=tokenizer.bos_token_id),
|
56 |
+
max_length=250,
|
57 |
+
num_beams=25,
|
58 |
+
no_repeat_ngram_size=4,
|
59 |
+
num_return_sequences=1,
|
60 |
+
early_stopping=True,
|
61 |
+
return_dict_in_generate=True,
|
62 |
+
output_scores=True,
|
63 |
+
)
|
64 |
+
|
65 |
+
output_text = [decode_tokens(sequence) for sequence in output_beam_ids.sequences]
|
66 |
+
|
67 |
+
return output_text
|
68 |
+
|
69 |
+
|
70 |
+
# https://huggingface.co/nguyenvulebinh/wavlm-bart/resolve/main/sample.wav
|
71 |
+
print(decode_wav([torchaudio.load('sample.wav')[0].squeeze()], model))
|
72 |
+
|
73 |
+
# <|0.06| What are the many parts that make a machine learning system feel like it works so magically cheap? |5.86|>
|
74 |
+
# <|5.68| Explletability factors important, so they tend to gear towards more simpler models with less parameters, but easier to explain, and on the other spectrum there are |15.86|>
|
75 |
+
|
76 |
+
```
|