nguyenvulebinh
commited on
Commit
•
ea41081
1
Parent(s):
0e69533
Update README.md
Browse files
README.md
CHANGED
@@ -1 +1,65 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: vi
|
3 |
+
tags:
|
4 |
+
- exbert
|
5 |
+
license: cc-by-nc-4.0
|
6 |
+
---
|
7 |
+
|
8 |
+
# RoBERTa for Vietnamese and English (envibert)
|
9 |
+
|
10 |
+
This RoBERTa version is trained by using 100GB of text (50GB of Vietnamese and 50GB of English) so it is named ***envibert***. The model architecture is custom for production so it only contains 70M parameters.
|
11 |
+
|
12 |
+
## Usages
|
13 |
+
|
14 |
+
```python
|
15 |
+
from transformers import RobertaModel
|
16 |
+
from transformers.file_utils import cached_path, hf_bucket_url
|
17 |
+
from importlib.machinery import SourceFileLoader
|
18 |
+
import os
|
19 |
+
|
20 |
+
cache_dir='./cache'
|
21 |
+
model_name='nguyenvulebinh/envibert'
|
22 |
+
|
23 |
+
def download_tokenizer_files():
|
24 |
+
resources = ['envibert_tokenizer.py', 'dict.txt', 'sentencepiece.bpe.model']
|
25 |
+
for item in resources:
|
26 |
+
if not os.path.exists(os.path.join(cache_dir, item)):
|
27 |
+
tmp_file = hf_bucket_url(model_name, filename=item)
|
28 |
+
tmp_file = cached_path(tmp_file,cache_dir=cache_dir)
|
29 |
+
os.rename(tmp_file, os.path.join(cache_dir, item))
|
30 |
+
|
31 |
+
download_tokenizer_files()
|
32 |
+
tokenizer = SourceFileLoader("envibert.tokenizer", os.path.join(cache_dir,'envibert_tokenizer.py')).load_module().RobertaTokenizer(cache_dir)
|
33 |
+
model = RobertaModel.from_pretrained(model_name,cache_dir=cache_dir)
|
34 |
+
|
35 |
+
# Encode text
|
36 |
+
text_input = 'Đại học Bách Khoa Hà Nội .'
|
37 |
+
text_ids = tokenizer(text_input, return_tensors='pt').input_ids
|
38 |
+
# tensor([[ 0, 705, 131, 8751, 2878, 347, 477, 5, 2]])
|
39 |
+
|
40 |
+
# Extract features
|
41 |
+
text_features = model(text_ids)
|
42 |
+
text_features['last_hidden_state'].shape
|
43 |
+
# torch.Size([1, 9, 768])
|
44 |
+
len(text_features['hidden_states'])
|
45 |
+
# 7
|
46 |
+
```
|
47 |
+
|
48 |
+
```text
|
49 |
+
@inproceedings{nguyen20d_interspeech,
|
50 |
+
author={Thai Binh Nguyen and Quang Minh Nguyen and Thi Thu Hien Nguyen and Quoc Truong Do and Chi Mai Luong},
|
51 |
+
title={{Improving Vietnamese Named Entity Recognition from Speech Using Word Capitalization and Punctuation Recovery Models}},
|
52 |
+
year=2020,
|
53 |
+
booktitle={Proc. Interspeech 2020},
|
54 |
+
pages={4263--4267},
|
55 |
+
doi={10.21437/Interspeech.2020-1896}
|
56 |
+
}
|
57 |
+
```
|
58 |
+
**Please CITE** our repo when it is used to help produce published results or is incorporated into other software.
|
59 |
+
|
60 |
+
|
61 |
+
# Contact
|
62 |
+
|
63 |
+
nguyenvulebinh@gmail.com
|
64 |
+
|
65 |
+
[![Follow](https://img.shields.io/twitter/follow/nguyenvulebinh?style=social)](https://twitter.com/intent/follow?screen_name=nguyenvulebinh)
|