nfhakim commited on
Commit
f634188
1 Parent(s): 8c378eb

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +41 -0
README.md ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - id
4
+ tags:
5
+ - indobert
6
+ - indobenchmark
7
+ - indonlu
8
+ ---
9
+ This is the second classification of sentiment analysis for (redacted) task
10
+
11
+ ### How to import
12
+ ```python
13
+ import torch
14
+ from transformers import BertForSequenceClassification, BertTokenizer, BertConfig, pipeline
15
+
16
+ # Load the tokenizer and model
17
+ tokenizer = BertTokenizer.from_pretrained("nfhakim/police-sentiment-c1-v2")
18
+ config = BertConfig.from_pretrained("nfhakim/police-sentiment-c1-v2")
19
+ model = BertForSequenceClassification.from_pretrained("nfhakim/police-sentiment-c1-v2", config=config)
20
+ ```
21
+
22
+ ### How to use
23
+ ```python
24
+ # Initialize the pipeline
25
+ nlp = pipeline("text-classification", model=model, tokenizer=tokenizer)
26
+
27
+ # Define a function to handle input text
28
+ def classify_text(text):
29
+ # Tokenize the text and truncate to the first 512 tokens if necessary
30
+ inputs = tokenizer(text, truncation=True, max_length=512, return_tensors="pt")
31
+
32
+ # Use the model to classify the text
33
+ results = nlp(inputs['input_ids'])
34
+ return results
35
+
36
+ # Example usage
37
+ input_text = "Your input text here"
38
+ output = classify_text(input_text)
39
+ print(output)
40
+
41
+ ```