|
import io |
|
import requests |
|
import json |
|
import time |
|
import torch |
|
import orjson |
|
import zipfile |
|
import torch.nn.functional as F |
|
from torch.utils.data import Dataset, DataLoader |
|
from transformers import BertTokenizerFast, BertForTokenClassification, Trainer, TrainingArguments, BertConfig |
|
from transformers import AutoTokenizer, AutoModelForTokenClassification |
|
|
|
API_URL = "http://dockerbase.duo:8000" |
|
PROJECT_ID = 1 |
|
|
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") |
|
|
|
def load_data(): |
|
|
|
res = requests.post( |
|
API_URL + "/v1/auth/login/", |
|
json={"username": "admin", "password": "123"} |
|
) |
|
token = res.json()["key"] |
|
|
|
res = requests.post(API_URL + "/v1/projects/1/download", |
|
json={"format":"JSONL","exportApproved": True}, |
|
headers={"Authorization": "Token " + token} |
|
) |
|
task_id = res.json()["task_id"] |
|
|
|
|
|
ready = False |
|
print("Waiting for export task to be ready.", end="") |
|
while not ready: |
|
res = requests.get( |
|
API_URL + "/v1/tasks/status/" + str(task_id), |
|
headers={"Authorization": "Token " + token} |
|
) |
|
ready = res.json()["ready"] |
|
if not ready: |
|
time.sleep(1) |
|
print(".", end="") |
|
print("") |
|
|
|
res = requests.get( |
|
API_URL + f"/v1/projects/{PROJECT_ID}/download", |
|
params={"taskId": task_id}, |
|
headers={"Authorization": "Token " + token} |
|
) |
|
|
|
zip_file = io.BytesIO(res.content) |
|
with zipfile.ZipFile(zip_file, "r") as zip_ref: |
|
data = zip_ref.read("admin.jsonl").decode("utf-8") |
|
|
|
res = requests.get( |
|
API_URL + f"/v1/projects/{PROJECT_ID}/span-types", |
|
headers={"Authorization": "Token " + token} |
|
) |
|
|
|
labels = res.json() |
|
|
|
return labels, [orjson.loads(line) for line in data.split("\n") if line] |
|
|
|
labels, data = load_data() |
|
|
|
|
|
|
|
|
|
|
|
label_to_id = {label["text"]: i + 1 for i, label in enumerate(labels)} |
|
label_to_id["[PAD]"] = 0 |
|
label_to_id["[UNK]"] = len(label_to_id) |
|
id_to_label = {v: k for k, v in label_to_id.items()} |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-turkish-cased") |
|
model = AutoModelForTokenClassification.from_pretrained("dbmdz/bert-base-turkish-cased", num_labels=len(label_to_id)).to(device) |
|
model.config.id2label = id_to_label |
|
model.config.label2id = label_to_id |
|
|
|
from datasets import DatasetDict, Dataset |
|
|
|
|
|
def preprocess_data(item, tokenizer, label_to_id): |
|
text = item['text'] |
|
|
|
inputs = tokenizer( |
|
text, |
|
return_offsets_mapping=True, |
|
return_tensors="pt", |
|
truncation=True, |
|
padding='max_length', |
|
max_length=128, |
|
) |
|
|
|
input_ids = inputs["input_ids"] |
|
attention_mask = inputs["attention_mask"] |
|
offset_mapping = inputs["offset_mapping"] |
|
|
|
labels = ["[PAD]"] * 128 |
|
for token_idx, [off_start, off_end] in enumerate(offset_mapping[0]): |
|
if off_start == off_end: |
|
continue |
|
|
|
for start, end, label in item['label']: |
|
if start <= off_start and off_end <= end: |
|
labels[token_idx] = label |
|
break |
|
|
|
if labels[token_idx] == "[PAD]": |
|
labels[token_idx] = "[UNK]" |
|
|
|
|
|
labels = [label_to_id[label] for label in labels] |
|
|
|
return { |
|
"input_ids": input_ids.flatten(), |
|
"attention_mask": attention_mask.flatten(), |
|
"labels": labels, |
|
} |
|
|
|
|
|
class AddressDataset(Dataset): |
|
def __init__(self, dataset): |
|
self.dataset = dataset |
|
|
|
def __len__(self): |
|
return len(self.dataset) |
|
|
|
def __getitem__(self, index): |
|
item = self.dataset[index] |
|
return {key: torch.tensor(val) for key, val in item.items()} |
|
|
|
|
|
dataset = Dataset.from_generator( |
|
lambda: (preprocess_data(item, tokenizer, label_to_id) for item in data), |
|
) |
|
|
|
dataset = dataset.train_test_split(test_size=0.2) |
|
dataset = DatasetDict({ |
|
"train": dataset["train"], |
|
"test": dataset["test"] |
|
}) |
|
|
|
|
|
training_args = TrainingArguments( |
|
output_dir="./results", |
|
num_train_epochs=35, |
|
per_device_train_batch_size=32, |
|
per_device_eval_batch_size=32, |
|
|
|
|
|
|
|
|
|
logging_strategy="epoch", |
|
|
|
) |
|
|
|
from sklearn.preprocessing import MultiLabelBinarizer |
|
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score |
|
|
|
def compute_metrics(pred, id_to_label): |
|
labels = pred.label_ids |
|
preds = pred.predictions.argmax(-1) |
|
|
|
labels = [[id_to_label[label_id] for label_id in label_ids] for label_ids in labels] |
|
preds = [[id_to_label[pred] for pred in preds] for preds in preds] |
|
|
|
labels = [set(label) for label in labels] |
|
preds = [set(pred) for pred in preds] |
|
|
|
mlb = MultiLabelBinarizer() |
|
mlb.fit([id_to_label.values()]) |
|
labels = mlb.transform(labels) |
|
preds = mlb.transform(preds) |
|
|
|
return { |
|
"accuracy": accuracy_score(labels, preds), |
|
"precision": precision_score(labels, preds, average="micro"), |
|
"recall": recall_score(labels, preds, average="micro"), |
|
"f1": f1_score(labels, preds, average="micro"), |
|
} |
|
|
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=dataset["train"], |
|
eval_dataset=dataset["test"], |
|
tokenizer=tokenizer, |
|
compute_metrics=lambda p: compute_metrics(p, id_to_label), |
|
) |
|
|
|
trainer.train() |
|
trainer.evaluate() |
|
|
|
trainer.save_model("./model") |