English
frankliu666 commited on
Commit
9c9d41d
·
1 Parent(s): 89eacba

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -10
README.md CHANGED
@@ -1,7 +1,7 @@
1
  ---
2
- license: mit
3
  language:
4
  - en
 
5
  ---
6
 
7
  # TAT-LLM: A Specialized Language Model for Discrete Reasoning over Tabular and Textual Data
@@ -19,17 +19,16 @@ We present TAT-LLM, a specialized language model crafted through the innovative
19
  | --- | --- | --- | --- | --- |
20
  | GPT-3.5-Turbo | - | 58.00 | 59.47 | 52.74 |
21
  | GPT-4 | - | 63.91 | 71.92 | 64.46 |
22
- | TAT-LLM-7B-LORA | 7B | 65.13 | 76.49 | 71.38 |
23
- | TAT-LLM-7B-FFT | 7B | 69.75 | 76.91 | 72.64 |
24
- | TAT-LLM-13B-LORA | 13B | 71.93 | 77.51 | 72.22 |
25
- | TAT-LLM-13B-FFT | 13B | 72.97 | 78.41 | 73.18 |
26
- | TAT-LLM-70B-LORA | 70B | **76.81** | 81.42 | 76.55 |
27
- | TAT-LLM-70B-FFT | 70B | 76.11 | **82.20** | **76.97** |
28
-
29
 
30
  ## Training
31
 
32
- We train our TAT-LLM model in various sizes, including 7B, 13B, and 70B, using different methods such as parameter-efficient fine-tuning and full-parameter fine-tuning of LLaMA 2 on a combination of financial data from the FinQA, TAT-QA, and TAT-DQA datasets. To refine accuracy, we introduce an External Executor, enhancing the model by processing intermediate outputs to derive conclusive answers. Please refer to the [paper](https://arxiv.org/abs/2401.13223) for more details.
33
 
34
  ## Inference & Evaluation
35
 
@@ -48,4 +47,4 @@ If you find this model helpful, please consider citing our paper:
48
  archivePrefix={arXiv},
49
  primaryClass={cs.CL}
50
  }
51
- ```
 
1
  ---
 
2
  language:
3
  - en
4
+ license: llama2
5
  ---
6
 
7
  # TAT-LLM: A Specialized Language Model for Discrete Reasoning over Tabular and Textual Data
 
19
  | --- | --- | --- | --- | --- |
20
  | GPT-3.5-Turbo | - | 58.00 | 59.47 | 52.74 |
21
  | GPT-4 | - | 63.91 | 71.92 | 64.46 |
22
+ | [TAT-LLM-7B-LORA](https://huggingface.co/next-tat/tat-llm-7b-lora) | 7B | 65.13 | 76.49 | 71.38 |
23
+ | [TAT-LLM-7B-FFT](https://huggingface.co/next-tat/tat-llm-7b-fft) | 7B | 69.75 | 76.91 | 72.64 |
24
+ | [TAT-LLM-13B-LORA](https://huggingface.co/next-tat/tat-llm-13b-lora) | 13B | 71.93 | 77.51 | 72.22 |
25
+ | [TAT-LLM-13B-FFT](https://huggingface.co/next-tat/tat-llm-13b-fft) | 13B | 72.97 | 78.41 | 73.18 |
26
+ | [TAT-LLM-70B-LORA](https://huggingface.co/next-tat/tat-llm-70b-lora) | 70B | **76.81** | 81.42 | 76.55 |
27
+ | [TAT-LLM-70B-FFT](https://huggingface.co/next-tat/tat-llm-70b-fft) | 70B | 76.11 | **82.20** | **76.97** |
 
28
 
29
  ## Training
30
 
31
+ We train our TAT-LLM model in various sizes, including 7B, 13B, and 70B, using different methods such as parameter-efficient fine-tuning and full-parameter fine-tuning of LLaMA 2 on a combination of financial data from the FinQA, TAT-QA, and TAT-DQA datasets([🤗HuggingFace Repo](https://huggingface.co/datasets/next-tat/tat-llm-instructions)). To refine accuracy, we introduce an External Executor, enhancing the model by processing intermediate outputs to derive conclusive answers. Please refer to the [paper](https://arxiv.org/abs/2401.13223) for more details.
32
 
33
  ## Inference & Evaluation
34
 
 
47
  archivePrefix={arXiv},
48
  primaryClass={cs.CL}
49
  }
50
+ ```