PerryCheng614
commited on
Commit
•
b5815d0
1
Parent(s):
d571c05
Update model card
Browse files
README.md
CHANGED
@@ -1,199 +1,82 @@
|
|
1 |
-
|
2 |
-
library_name: transformers
|
3 |
-
tags: []
|
4 |
-
---
|
5 |
-
|
6 |
-
# Model Card for Model ID
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
|
|
|
11 |
|
12 |
## Model Details
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
[
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
+
# HP BERT Intent Classification Model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
This model is fine-tuned BERT for classifying different types of queries in the HP documentation context.
|
4 |
|
5 |
## Model Details
|
6 |
+
- Base model: bert-base-uncased
|
7 |
+
- Task: 3-class classification
|
8 |
+
- Classes:
|
9 |
+
- 0: Queries requiring PDF context
|
10 |
+
- 1: Summary-related queries
|
11 |
+
- 2: Metadata-related queries
|
12 |
+
|
13 |
+
## Usage
|
14 |
+
```python
|
15 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
16 |
+
import torch
|
17 |
+
|
18 |
+
class BertInference:
|
19 |
+
def __init__(self, model_path):
|
20 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(model_path).to(self.device)
|
22 |
+
self.tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
23 |
+
self.template = "Question: {} Response: "
|
24 |
+
self.label_map = {
|
25 |
+
0: "query_with_pdf",
|
26 |
+
1: "summarize_pdf",
|
27 |
+
2: "query_metadata"
|
28 |
+
}
|
29 |
+
|
30 |
+
def predict(self, text):
|
31 |
+
# Format the input text
|
32 |
+
formatted_text = self.template.format(text)
|
33 |
+
|
34 |
+
# Tokenize
|
35 |
+
inputs = self.tokenizer(
|
36 |
+
formatted_text,
|
37 |
+
truncation=True,
|
38 |
+
max_length=512,
|
39 |
+
padding='max_length',
|
40 |
+
return_tensors="pt"
|
41 |
+
).to(self.device)
|
42 |
+
|
43 |
+
# Get prediction
|
44 |
+
with torch.no_grad():
|
45 |
+
outputs = self.model(**inputs)
|
46 |
+
predictions = torch.softmax(outputs.logits, dim=1)
|
47 |
+
predicted_class = torch.argmax(predictions, dim=1).item()
|
48 |
+
confidence = predictions[0][predicted_class].item()
|
49 |
+
|
50 |
+
return {
|
51 |
+
"predicted_class": self.label_map[predicted_class],
|
52 |
+
"confidence": confidence,
|
53 |
+
"all_probabilities": {
|
54 |
+
self.label_map[i]: prob.item()
|
55 |
+
for i, prob in enumerate(predictions[0])
|
56 |
+
}
|
57 |
+
}
|
58 |
+
|
59 |
+
def main():
|
60 |
+
# Initialize the model
|
61 |
+
model_path = "output_dir_decision" # Path to your saved model
|
62 |
+
inferencer = BertInference(model_path)
|
63 |
+
|
64 |
+
# Example usage
|
65 |
+
test_questions = [
|
66 |
+
"What are the new features in corolla cross?",
|
67 |
+
"What is the summary of the provided pdf?",
|
68 |
+
"The filesize of the pdf is?",
|
69 |
+
]
|
70 |
+
|
71 |
+
for question in test_questions:
|
72 |
+
result = inferencer.predict(question)
|
73 |
+
print(f"\nQuestion: {question}")
|
74 |
+
print(f"Predicted Class: {result['predicted_class']}")
|
75 |
+
print(f"Confidence: {result['confidence']:.4f}")
|
76 |
+
print("All Probabilities:")
|
77 |
+
for class_name, prob in result['all_probabilities'].items():
|
78 |
+
print(f" {class_name}: {prob:.4f}")
|
79 |
+
|
80 |
+
if __name__ == "__main__":
|
81 |
+
main()
|
82 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|