newwater commited on
Commit
a77c91c
1 Parent(s): 6de1bb5

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1108.72 +/- 76.49
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:301be1e2a1e926919a32cdc0f13ca00e22173723bc052bd3ea57821470f92028
3
+ size 129247
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb55844f040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb55844f0d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb55844f160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb55844f1f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb55844f280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb55844f310>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb55844f3a0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb55844f430>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb55844f4c0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb55844f550>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb55844f5e0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb55844f670>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fb558434cc0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674561098486491153,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVqwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMeS9ob21lL2FjbC9EZXNrdG9wL3JvYm90LWxlYXJuaW5nL2h1Z2dpbmdmYWNlLzYuYWN0b3ItY3JpdGljL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFRtXb8T+x6/jdh7PHYFoL/foks/TtpGP6wZMz6YhoC+ANc2v/9MfcC2T2e+n1cuvw3igzwfy7m/zXkhP/DVlL7W66k+4YM1P7ysIj8JId+/2LUxP9t0Wb/mNdo8atZ7vQxLAT9vpJw+yEPuv1tgeD+rSCa/HL+9vmhBlj7F030/m1BUv40+971d/1U/gkNov0s+ST9iLKc/f8/1PvAjAb8k4dA+yBNnP8bhIz/UFac+CsfSPjqLcD6EFZI/JIFnPFCKLz80crs/enCHv0bKUr4MSwE/b6ScPhWHCT/G7YO/dvE4v1ye7L6GQU4+T5ZzvWNigz/gris+x/QTPxcoPr/yPea/1ZUCPqp9Gj+vDss+4dq5PL3FKD8U1CQ/uQcFPaWJCD+VaKQ97yRtP8zPuj5iP8U+89IBwC1l/r1EvB2/DEsBP2+knD4Vhwk/xu2DvxzwK7/QUQa/Nq8HPqKdzjxdeuk+SvgqPlX7Oz+L3Fu/1/lev/V4aD5nkzM/oPpyPhCWhT51vAk+s18kP9sw4DygJVY+dOLsvdY1jj9LHmQ++1qYPrV46r5Cp2280L0uvgxLAT9vpJw+FYcJP8btg7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAf67u1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5J8GvQAAAACvHdq/AAAAACCW8zwAAAAA1ILdPwAAAAD22U67AAAAAL2A/T8AAAAA8BPwPQAAAAAQTPS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvg/otgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHnoZ70AAAAACyD2vwAAAAAoDMK9AAAAAKUA9j8AAAAAu6MOvgAAAAA6/wBAAAAAAGAb5T0AAAAA1pL2vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrTLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC6rP89AAAAAETY5r8AAAAAASw2vQAAAAAj6PI/AAAAAI9vx70AAAAA2LvZPwAAAABhdBK+AAAAAHZr278AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9/Im0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHDmbvQAAAABRMuW/AAAAALZkxb0AAAAAalz5PwAAAABhJti9AAAAALqn9D8AAAAA2LHyvQAAAACqKPm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJS8GGFi8WeMAWyUTegDjAF0lEdAoEFrbHp8nnV9lChoBkdAlGmw6Mir1mgHTegDaAhHQKBDIWoFV1h1fZQoaAZHQJPbACgbp/xoB03oA2gIR0CgRw7LMcIadX2UKGgGR0CUm/5bQkX2aAdN6ANoCEdAoEo2+9Jz1nV9lChoBkdAkWS5/XoTwmgHTegDaAhHQKBKOIcBEKF1fZQoaAZHQJNGr13+uNhoB03oA2gIR0CgS1cjqv/zdX2UKGgGR0CTrzAVwgkkaAdN6ANoCEdAoE4DV6NVBHV9lChoBkdAlOKYexOclWgHTegDaAhHQKBRQrksBhh1fZQoaAZHQJKT2QJXyRVoB03oA2gIR0CgUURw6ySndX2UKGgGR0CTri7uDzy0aAdN6ANoCEdAoFJXbCaZyHV9lChoBkdAk9SU2Hck+2gHTegDaAhHQKBVk6bvw3J1fZQoaAZHQJS4Zu76Hj9oB03oA2gIR0CgWPUdRzikdX2UKGgGR0CU665vcafjaAdN6ANoCEdAoFj2oBJZn3V9lChoBkdAkkRkyDZlF2gHTegDaAhHQKBaMtNBWxR1fZQoaAZHQJHEA02tMf1oB03oA2gIR0CgXUd7fHghdX2UKGgGR0CT4ZO8CgbqaAdN6ANoCEdAoGC8cZLqU3V9lChoBkdAk1OHp0OmSGgHTegDaAhHQKBgvgx8D0V1fZQoaAZHQJFjdCiRGMJoB03oA2gIR0CgYfELx7RfdX2UKGgGR0CTJz+xGDtgaAdN6ANoCEdAoGUNuJk5InV9lChoBkdAk3K/F3pwCWgHTegDaAhHQKBoD3IuGsV1fZQoaAZHQJL/LNRm9QJoB03oA2gIR0CgaBEBCD28dX2UKGgGR0CS9V06YE4eaAdN6ANoCEdAoGl/wqiGnHV9lChoBkdAlHv60dBBzGgHTegDaAhHQKBseGkep4t1fZQoaAZHQJHmc3974SJoB03oA2gIR0Cgb/Uf5k9VdX2UKGgGR0CUTmALy+YdaAdN6ANoCEdAoG/3uNPxhHV9lChoBkdAWUybMHKOk2gHS3VoCEdAoHD3ObAk9nV9lChoBkdAklOcZgogFGgHTegDaAhHQKBxRbmlqJx1fZQoaAZHQJNKLcQAdXFoB03oA2gIR0Cgc+Jbt7a7dX2UKGgGR0CSy7DPnjhlaAdN6ANoCEdAoHdT7O3UhHV9lChoBkdAkqZvkWAPNGgHTegDaAhHQKB4KJokAxV1fZQoaAZHQJJgvGBFuvVoB03oA2gIR0CgeHiFj/dZdX2UKGgGR0CRjdbgjyFxaAdN6ANoCEdAoHtJDu0CzXV9lChoBkdAlE993bEgn2gHTegDaAhHQKB+nMdLg4x1fZQoaAZHQJG63Ty8SPFoB03oA2gIR0Cgf25I6KcedX2UKGgGR0CQ6iFjd56daAdN6ANoCEdAoH/KKR+z+nV9lChoBkdAksBM+JP69GgHTegDaAhHQKCCzVmz0H11fZQoaAZHQJGLvwF1SwZoB03oA2gIR0Cghepu/DcedX2UKGgGR0CRa2N6PbPAaAdN6ANoCEdAoIbeoWHk93V9lChoBkdAklN8dDIBBGgHTegDaAhHQKCHT7NSqER1fZQoaAZHQJOSwGQjlgdoB03oA2gIR0Cgikt1ZDArdX2UKGgGR0CQGkru6VdHaAdN6ANoCEdAoI3cSkCV8nV9lChoBkdAktyIn0Cih2gHTegDaAhHQKCPEHX2/SJ1fZQoaAZHQI7K+c8TzupoB03oA2gIR0Cgj3bmEGqxdX2UKGgGR0CSpS6rvLHNaAdN6ANoCEdAoJNb6P8ye3V9lChoBkdAjauqFh5PdmgHTegDaAhHQKCXIJqIrOJ1fZQoaAZHQI7GzdP+GXZoB03oA2gIR0CgmEyEL6UJdX2UKGgGR0CCKmfwI+nqaAdN6ANoCEdAoJjQLqlgt3V9lChoBkdAiZ0vtMPBi2gHTegDaAhHQKCcI4zabnZ1fZQoaAZHQIhYRAKOT7loB03oA2gIR0Cgn53kxREXdX2UKGgGR0CQiBDUExIraAdN6ANoCEdAoKBuXZ5AyHV9lChoBkdAkmI39vS+g2gHTegDaAhHQKCg4al1r7B1fZQoaAZHQITtANutOmBoB03oA2gIR0CgpEeokzGhdX2UKGgGR0CNAWsqaw2VaAdN6ANoCEdAoKeEGC7K73V9lChoBkdAlBmIvexfOWgHTegDaAhHQKCoicH4XXR1fZQoaAZHQJF3yL61stVoB03oA2gIR0CgqQqmsNlRdX2UKGgGR0CCsuTewcHXaAdN6ANoCEdAoKvb3mFJx3V9lChoBkdAhtkE/r0J4WgHTegDaAhHQKCvUyO7xut1fZQoaAZHQJDfB2mpEQZoB03oA2gIR0CgsD/16E8JdX2UKGgGR0CRYpESuhboaAdN6ANoCEdAoLCPEZR8+nV9lChoBkdAkgbVUp/gBWgHTegDaAhHQKCzPIqbz9V1fZQoaAZHQJUJbINmUW5oB03oA2gIR0CgttQ1JlJ6dX2UKGgGR0CUCenRLK3eaAdN6ANoCEdAoLejYTTOPnV9lChoBkdAgt5VQIldC2gHTegDaAhHQKC38j7hvR91fZQoaAZHQJU1uWkadc1oB03oA2gIR0CgutsyBTXKdX2UKGgGR0CT02NlyzX0aAdN6ANoCEdAoL4Qe3hGY3V9lChoBkdAkAYd3wCr92gHTegDaAhHQKC+4Rsdkrh1fZQoaAZHQJIfyGqPwNNoB03oA2gIR0Cgv0IatLcsdX2UKGgGR0CVjcGhVU++aAdN6ANoCEdAoMJOSOinHnV9lChoBkdAkzLQl0HQhWgHTegDaAhHQKDFXZtelbh1fZQoaAZHQJOp+sCDEm9oB03oA2gIR0Cgxj3jdYW+dX2UKGgGR0CT6GJfpljFaAdN6ANoCEdAoMagPwuuinV9lChoBkdAkOhcLjPv8mgHTegDaAhHQKDJVmcOLBN1fZQoaAZHQJRIJNvfj0doB03oA2gIR0CgzLPhhpg1dX2UKGgGR0CSSVj/MnqnaAdN6ANoCEdAoM2T0aqCH3V9lChoBkdAk0fUjLSuyWgHTegDaAhHQKDN6TFERap1fZQoaAZHQIlTCI3zcypoB03oA2gIR0Cg0IyLZSNwdX2UKGgGR0CT3GmUnogWaAdN6ANoCEdAoNPp2U0N0HV9lChoBkdAjsz9onKGL2gHTegDaAhHQKDUrVkMCtB1fZQoaAZHQJFSGBGx2StoB03oA2gIR0Cg1Pw+MZP3dX2UKGgGR0CT89Df3vhIaAdN6ANoCEdAoNfDq6e5F3V9lChoBkdAkfrwmReTmmgHTegDaAhHQKDa58lXzUZ1fZQoaAZHQJGxJlMAWBVoB03oA2gIR0Cg27FvQ4S6dX2UKGgGR0CTjSe4Cp3paAdN6ANoCEdAoNwPm3fAK3V9lChoBkdAkJNwkX1rZmgHTegDaAhHQKDfE/cnE2p1fZQoaAZHQJN44ejmCAdoB03oA2gIR0Cg4hXjlxOtdX2UKGgGR0CWs9IqslsxaAdN6ANoCEdAoOL1lTWGy3V9lChoBkdAlODVSXMQmWgHTegDaAhHQKDjWe2d/ax1fZQoaAZHQJP1fb8FY+1oB03oA2gIR0Cg5h6uOjqOdX2UKGgGR0CTlUHbAUL2aAdN6ANoCEdAoOlgSYgJTnV9lChoBkdAjKWOt4iX6mgHTegDaAhHQKDqRcQAdXF1fZQoaAZHQI1uf84xUNtoB03oA2gIR0Cg6pO2y9mIdX2UKGgGR0CReOinHeabaAdN6ANoCEdAoO0hDb8FZHV9lChoBkdAkgnt3KSxJWgHTegDaAhHQKDwdnM+u/11fZQoaAZHQJDggTJyQxNoB03oA2gIR0Cg8TyuIRAbdX2UKGgGR0CR2ndjXnQqaAdN6ANoCEdAoPGJlDneSHV9lChoBkdAkmOFspG4JGgHTegDaAhHQKD0i3T/hl11fZQoaAZHQJNx+3UhFE1oB03oA2gIR0Cg97ISUTtcdX2UKGgGR0CS23D6Fds0aAdN6ANoCEdAoPh3ykKu0XV9lChoBkdAkWlK0+kgwGgHTegDaAhHQKD40Q4CIUJ1fZQoaAZHQJFYlXYDklxoB03oA2gIR0Cg+8OKXOW0dWUu"
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc64084ef1a2bbb2d311fe3346a678760badff3747df8b6e6c0a99edfb7e45f9
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d60990f34a303b0f65865b81e552ee24cd60f57feaf2a596f7130d36a79cffd3
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.13.0-30-generic-x86_64-with-glibc2.29 # 33~20.04.1-Ubuntu SMP Mon Feb 7 14:25:10 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb55844f040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb55844f0d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb55844f160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb55844f1f0>", "_build": "<function ActorCriticPolicy._build at 0x7fb55844f280>", "forward": "<function ActorCriticPolicy.forward at 0x7fb55844f310>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb55844f3a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb55844f430>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb55844f4c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb55844f550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb55844f5e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb55844f670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb558434cc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674561098486491153, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVqwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMeS9ob21lL2FjbC9EZXNrdG9wL3JvYm90LWxlYXJuaW5nL2h1Z2dpbmdmYWNlLzYuYWN0b3ItY3JpdGljL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFRtXb8T+x6/jdh7PHYFoL/foks/TtpGP6wZMz6YhoC+ANc2v/9MfcC2T2e+n1cuvw3igzwfy7m/zXkhP/DVlL7W66k+4YM1P7ysIj8JId+/2LUxP9t0Wb/mNdo8atZ7vQxLAT9vpJw+yEPuv1tgeD+rSCa/HL+9vmhBlj7F030/m1BUv40+971d/1U/gkNov0s+ST9iLKc/f8/1PvAjAb8k4dA+yBNnP8bhIz/UFac+CsfSPjqLcD6EFZI/JIFnPFCKLz80crs/enCHv0bKUr4MSwE/b6ScPhWHCT/G7YO/dvE4v1ye7L6GQU4+T5ZzvWNigz/gris+x/QTPxcoPr/yPea/1ZUCPqp9Gj+vDss+4dq5PL3FKD8U1CQ/uQcFPaWJCD+VaKQ97yRtP8zPuj5iP8U+89IBwC1l/r1EvB2/DEsBP2+knD4Vhwk/xu2DvxzwK7/QUQa/Nq8HPqKdzjxdeuk+SvgqPlX7Oz+L3Fu/1/lev/V4aD5nkzM/oPpyPhCWhT51vAk+s18kP9sw4DygJVY+dOLsvdY1jj9LHmQ++1qYPrV46r5Cp2280L0uvgxLAT9vpJw+FYcJP8btg7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAf67u1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5J8GvQAAAACvHdq/AAAAACCW8zwAAAAA1ILdPwAAAAD22U67AAAAAL2A/T8AAAAA8BPwPQAAAAAQTPS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvg/otgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHnoZ70AAAAACyD2vwAAAAAoDMK9AAAAAKUA9j8AAAAAu6MOvgAAAAA6/wBAAAAAAGAb5T0AAAAA1pL2vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrTLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC6rP89AAAAAETY5r8AAAAAASw2vQAAAAAj6PI/AAAAAI9vx70AAAAA2LvZPwAAAABhdBK+AAAAAHZr278AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9/Im0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHDmbvQAAAABRMuW/AAAAALZkxb0AAAAAalz5PwAAAABhJti9AAAAALqn9D8AAAAA2LHyvQAAAACqKPm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJS8GGFi8WeMAWyUTegDjAF0lEdAoEFrbHp8nnV9lChoBkdAlGmw6Mir1mgHTegDaAhHQKBDIWoFV1h1fZQoaAZHQJPbACgbp/xoB03oA2gIR0CgRw7LMcIadX2UKGgGR0CUm/5bQkX2aAdN6ANoCEdAoEo2+9Jz1nV9lChoBkdAkWS5/XoTwmgHTegDaAhHQKBKOIcBEKF1fZQoaAZHQJNGr13+uNhoB03oA2gIR0CgS1cjqv/zdX2UKGgGR0CTrzAVwgkkaAdN6ANoCEdAoE4DV6NVBHV9lChoBkdAlOKYexOclWgHTegDaAhHQKBRQrksBhh1fZQoaAZHQJKT2QJXyRVoB03oA2gIR0CgUURw6ySndX2UKGgGR0CTri7uDzy0aAdN6ANoCEdAoFJXbCaZyHV9lChoBkdAk9SU2Hck+2gHTegDaAhHQKBVk6bvw3J1fZQoaAZHQJS4Zu76Hj9oB03oA2gIR0CgWPUdRzikdX2UKGgGR0CU665vcafjaAdN6ANoCEdAoFj2oBJZn3V9lChoBkdAkkRkyDZlF2gHTegDaAhHQKBaMtNBWxR1fZQoaAZHQJHEA02tMf1oB03oA2gIR0CgXUd7fHghdX2UKGgGR0CT4ZO8CgbqaAdN6ANoCEdAoGC8cZLqU3V9lChoBkdAk1OHp0OmSGgHTegDaAhHQKBgvgx8D0V1fZQoaAZHQJFjdCiRGMJoB03oA2gIR0CgYfELx7RfdX2UKGgGR0CTJz+xGDtgaAdN6ANoCEdAoGUNuJk5InV9lChoBkdAk3K/F3pwCWgHTegDaAhHQKBoD3IuGsV1fZQoaAZHQJL/LNRm9QJoB03oA2gIR0CgaBEBCD28dX2UKGgGR0CS9V06YE4eaAdN6ANoCEdAoGl/wqiGnHV9lChoBkdAlHv60dBBzGgHTegDaAhHQKBseGkep4t1fZQoaAZHQJHmc3974SJoB03oA2gIR0Cgb/Uf5k9VdX2UKGgGR0CUTmALy+YdaAdN6ANoCEdAoG/3uNPxhHV9lChoBkdAWUybMHKOk2gHS3VoCEdAoHD3ObAk9nV9lChoBkdAklOcZgogFGgHTegDaAhHQKBxRbmlqJx1fZQoaAZHQJNKLcQAdXFoB03oA2gIR0Cgc+Jbt7a7dX2UKGgGR0CSy7DPnjhlaAdN6ANoCEdAoHdT7O3UhHV9lChoBkdAkqZvkWAPNGgHTegDaAhHQKB4KJokAxV1fZQoaAZHQJJgvGBFuvVoB03oA2gIR0CgeHiFj/dZdX2UKGgGR0CRjdbgjyFxaAdN6ANoCEdAoHtJDu0CzXV9lChoBkdAlE993bEgn2gHTegDaAhHQKB+nMdLg4x1fZQoaAZHQJG63Ty8SPFoB03oA2gIR0Cgf25I6KcedX2UKGgGR0CQ6iFjd56daAdN6ANoCEdAoH/KKR+z+nV9lChoBkdAksBM+JP69GgHTegDaAhHQKCCzVmz0H11fZQoaAZHQJGLvwF1SwZoB03oA2gIR0Cghepu/DcedX2UKGgGR0CRa2N6PbPAaAdN6ANoCEdAoIbeoWHk93V9lChoBkdAklN8dDIBBGgHTegDaAhHQKCHT7NSqER1fZQoaAZHQJOSwGQjlgdoB03oA2gIR0Cgikt1ZDArdX2UKGgGR0CQGkru6VdHaAdN6ANoCEdAoI3cSkCV8nV9lChoBkdAktyIn0Cih2gHTegDaAhHQKCPEHX2/SJ1fZQoaAZHQI7K+c8TzupoB03oA2gIR0Cgj3bmEGqxdX2UKGgGR0CSpS6rvLHNaAdN6ANoCEdAoJNb6P8ye3V9lChoBkdAjauqFh5PdmgHTegDaAhHQKCXIJqIrOJ1fZQoaAZHQI7GzdP+GXZoB03oA2gIR0CgmEyEL6UJdX2UKGgGR0CCKmfwI+nqaAdN6ANoCEdAoJjQLqlgt3V9lChoBkdAiZ0vtMPBi2gHTegDaAhHQKCcI4zabnZ1fZQoaAZHQIhYRAKOT7loB03oA2gIR0Cgn53kxREXdX2UKGgGR0CQiBDUExIraAdN6ANoCEdAoKBuXZ5AyHV9lChoBkdAkmI39vS+g2gHTegDaAhHQKCg4al1r7B1fZQoaAZHQITtANutOmBoB03oA2gIR0CgpEeokzGhdX2UKGgGR0CNAWsqaw2VaAdN6ANoCEdAoKeEGC7K73V9lChoBkdAlBmIvexfOWgHTegDaAhHQKCoicH4XXR1fZQoaAZHQJF3yL61stVoB03oA2gIR0CgqQqmsNlRdX2UKGgGR0CCsuTewcHXaAdN6ANoCEdAoKvb3mFJx3V9lChoBkdAhtkE/r0J4WgHTegDaAhHQKCvUyO7xut1fZQoaAZHQJDfB2mpEQZoB03oA2gIR0CgsD/16E8JdX2UKGgGR0CRYpESuhboaAdN6ANoCEdAoLCPEZR8+nV9lChoBkdAkgbVUp/gBWgHTegDaAhHQKCzPIqbz9V1fZQoaAZHQJUJbINmUW5oB03oA2gIR0CgttQ1JlJ6dX2UKGgGR0CUCenRLK3eaAdN6ANoCEdAoLejYTTOPnV9lChoBkdAgt5VQIldC2gHTegDaAhHQKC38j7hvR91fZQoaAZHQJU1uWkadc1oB03oA2gIR0CgutsyBTXKdX2UKGgGR0CT02NlyzX0aAdN6ANoCEdAoL4Qe3hGY3V9lChoBkdAkAYd3wCr92gHTegDaAhHQKC+4Rsdkrh1fZQoaAZHQJIfyGqPwNNoB03oA2gIR0Cgv0IatLcsdX2UKGgGR0CVjcGhVU++aAdN6ANoCEdAoMJOSOinHnV9lChoBkdAkzLQl0HQhWgHTegDaAhHQKDFXZtelbh1fZQoaAZHQJOp+sCDEm9oB03oA2gIR0Cgxj3jdYW+dX2UKGgGR0CT6GJfpljFaAdN6ANoCEdAoMagPwuuinV9lChoBkdAkOhcLjPv8mgHTegDaAhHQKDJVmcOLBN1fZQoaAZHQJRIJNvfj0doB03oA2gIR0CgzLPhhpg1dX2UKGgGR0CSSVj/MnqnaAdN6ANoCEdAoM2T0aqCH3V9lChoBkdAk0fUjLSuyWgHTegDaAhHQKDN6TFERap1fZQoaAZHQIlTCI3zcypoB03oA2gIR0Cg0IyLZSNwdX2UKGgGR0CT3GmUnogWaAdN6ANoCEdAoNPp2U0N0HV9lChoBkdAjsz9onKGL2gHTegDaAhHQKDUrVkMCtB1fZQoaAZHQJFSGBGx2StoB03oA2gIR0Cg1Pw+MZP3dX2UKGgGR0CT89Df3vhIaAdN6ANoCEdAoNfDq6e5F3V9lChoBkdAkfrwmReTmmgHTegDaAhHQKDa58lXzUZ1fZQoaAZHQJGxJlMAWBVoB03oA2gIR0Cg27FvQ4S6dX2UKGgGR0CTjSe4Cp3paAdN6ANoCEdAoNwPm3fAK3V9lChoBkdAkJNwkX1rZmgHTegDaAhHQKDfE/cnE2p1fZQoaAZHQJN44ejmCAdoB03oA2gIR0Cg4hXjlxOtdX2UKGgGR0CWs9IqslsxaAdN6ANoCEdAoOL1lTWGy3V9lChoBkdAlODVSXMQmWgHTegDaAhHQKDjWe2d/ax1fZQoaAZHQJP1fb8FY+1oB03oA2gIR0Cg5h6uOjqOdX2UKGgGR0CTlUHbAUL2aAdN6ANoCEdAoOlgSYgJTnV9lChoBkdAjKWOt4iX6mgHTegDaAhHQKDqRcQAdXF1fZQoaAZHQI1uf84xUNtoB03oA2gIR0Cg6pO2y9mIdX2UKGgGR0CReOinHeabaAdN6ANoCEdAoO0hDb8FZHV9lChoBkdAkgnt3KSxJWgHTegDaAhHQKDwdnM+u/11fZQoaAZHQJDggTJyQxNoB03oA2gIR0Cg8TyuIRAbdX2UKGgGR0CR2ndjXnQqaAdN6ANoCEdAoPGJlDneSHV9lChoBkdAkmOFspG4JGgHTegDaAhHQKD0i3T/hl11fZQoaAZHQJNx+3UhFE1oB03oA2gIR0Cg97ISUTtcdX2UKGgGR0CS23D6Fds0aAdN6ANoCEdAoPh3ykKu0XV9lChoBkdAkWlK0+kgwGgHTegDaAhHQKD40Q4CIUJ1fZQoaAZHQJFYlXYDklxoB03oA2gIR0Cg+8OKXOW0dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.13.0-30-generic-x86_64-with-glibc2.29 # 33~20.04.1-Ubuntu SMP Mon Feb 7 14:25:10 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.1", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (814 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1108.71870451367, "std_reward": 76.49245818919552, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-24T21:28:59.351204"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f21e7b801c1b721013872497615fbe9576eb765d1700aa3baca945e4260eb703
3
+ size 2521