ozayezerceli commited on
Commit
813afca
·
verified ·
1 Parent(s): c1e22cc

Upload 10 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,702 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - tr
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:482091
10
+ - loss:MatryoshkaLoss
11
+ - loss:MultipleNegativesRankingLoss
12
+ - loss:CoSENTLoss
13
+ base_model: Alibaba-NLP/gte-multilingual-base
14
+ widget:
15
+ - source_sentence: Ya da dışarı çıkıp yürü ya da biraz koşun. Bunu düzenli olarak
16
+ yapmıyorum ama Washington bunu yapmak için harika bir yer.
17
+ sentences:
18
+ - “Washington's yürüyüş ya da koşu için harika bir yer.”
19
+ - H-2A uzaylılar Amerika Birleşik Devletleri'nde zaman kısa süreleri var.
20
+ - “Washington'da düzenli olarak yürüyüşe ya da koşuya çıkıyorum.”
21
+ - source_sentence: Orta yaylalar ve güney kıyıları arasındaki kontrast daha belirgin
22
+ olamazdı.
23
+ sentences:
24
+ - İşitme Yardımı Uyumluluğu Müzakere Kuralları Komitesi, Federal İletişim Komisyonu'nun
25
+ bir ürünüdür.
26
+ - Dağlık ve sahil arasındaki kontrast kolayca işaretlendi.
27
+ - Kontrast işaretlenemedi.
28
+ - source_sentence: Bir 1997 Henry J. Kaiser Aile Vakfı anket yönetilen bakım planlarında
29
+ Amerikalılar temelde kendi bakımı ile memnun olduğunu bulundu.
30
+ sentences:
31
+ - Kaplanları takip ederken çok sessiz olmalısın.
32
+ - Henry Kaiser vakfı insanların sağlık hizmetlerinden hoşlandığını gösteriyor.
33
+ - Henry Kaiser Vakfı insanların sağlık hizmetlerinden nefret ettiğini gösteriyor.
34
+ - source_sentence: Eminim yapmışlardır.
35
+ sentences:
36
+ - Eminim öyle yapmışlardır.
37
+ - Batı Teksas'ta 100 10 dereceydi.
38
+ - Eminim yapmamışlardır.
39
+ - source_sentence: Ve gerçekten, baba haklıydı, oğlu zaten her şeyi tecrübe etmişti,
40
+ her şeyi denedi ve daha az ilgileniyordu.
41
+ sentences:
42
+ - Oğlu her şeye olan ilgisini kaybediyordu.
43
+ - Pek bir şey yapmadım.
44
+ - Baba oğlunun tecrübe için hala çok şey olduğunu biliyordu.
45
+ datasets:
46
+ - emrecan/all-nli-tr
47
+ pipeline_tag: sentence-similarity
48
+ library_name: sentence-transformers
49
+ metrics:
50
+ - cosine_accuracy
51
+ - pearson_cosine
52
+ - spearman_cosine
53
+ model-index:
54
+ - name: SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
55
+ results:
56
+ - task:
57
+ type: triplet
58
+ name: Triplet
59
+ dataset:
60
+ name: all nli tr test
61
+ type: all-nli-tr-test
62
+ metrics:
63
+ - type: cosine_accuracy
64
+ value: 0.8966145437983908
65
+ name: Cosine Accuracy
66
+ - type: cosine_accuracy
67
+ value: 0.9351753453772582
68
+ name: Cosine Accuracy
69
+ - task:
70
+ type: semantic-similarity
71
+ name: Semantic Similarity
72
+ dataset:
73
+ name: sts test
74
+ type: sts-test
75
+ metrics:
76
+ - type: pearson_cosine
77
+ value: 0.8043925123766598
78
+ name: Pearson Cosine
79
+ - type: spearman_cosine
80
+ value: 0.804133282756889
81
+ name: Spearman Cosine
82
+ - type: pearson_cosine
83
+ value: 0.8133873820848544
84
+ name: Pearson Cosine
85
+ - type: spearman_cosine
86
+ value: 0.8199552151367876
87
+ name: Spearman Cosine
88
+ - task:
89
+ type: semantic-similarity
90
+ name: Semantic Similarity
91
+ dataset:
92
+ name: sts22 test
93
+ type: sts22-test
94
+ metrics:
95
+ - type: pearson_cosine
96
+ value: 0.647912337747937
97
+ name: Pearson Cosine
98
+ - type: spearman_cosine
99
+ value: 0.6694072470896322
100
+ name: Spearman Cosine
101
+ - type: pearson_cosine
102
+ value: 0.6514085062457564
103
+ name: Pearson Cosine
104
+ - type: spearman_cosine
105
+ value: 0.6827342891126081
106
+ name: Spearman Cosine
107
+ - task:
108
+ type: semantic-similarity
109
+ name: Semantic Similarity
110
+ dataset:
111
+ name: sts dev gte multilingual base
112
+ type: sts-dev-gte-multilingual-base
113
+ metrics:
114
+ - type: pearson_cosine
115
+ value: 0.838717139426684
116
+ name: Pearson Cosine
117
+ - type: spearman_cosine
118
+ value: 0.8428367492381358
119
+ name: Spearman Cosine
120
+ - task:
121
+ type: semantic-similarity
122
+ name: Semantic Similarity
123
+ dataset:
124
+ name: sts test gte multilingual base
125
+ type: sts-test-gte-multilingual-base
126
+ metrics:
127
+ - type: pearson_cosine
128
+ value: 0.8133873820848544
129
+ name: Pearson Cosine
130
+ - type: spearman_cosine
131
+ value: 0.8199552151367876
132
+ name: Spearman Cosine
133
+ - task:
134
+ type: semantic-similarity
135
+ name: Semantic Similarity
136
+ dataset:
137
+ name: stsb dev 768
138
+ type: stsb-dev-768
139
+ metrics:
140
+ - type: pearson_cosine
141
+ value: 0.870311456444647
142
+ name: Pearson Cosine
143
+ - type: spearman_cosine
144
+ value: 0.8747522169942328
145
+ name: Spearman Cosine
146
+ - task:
147
+ type: semantic-similarity
148
+ name: Semantic Similarity
149
+ dataset:
150
+ name: stsb dev 512
151
+ type: stsb-dev-512
152
+ metrics:
153
+ - type: pearson_cosine
154
+ value: 0.8696934286998554
155
+ name: Pearson Cosine
156
+ - type: spearman_cosine
157
+ value: 0.8753487201891684
158
+ name: Spearman Cosine
159
+ - task:
160
+ type: semantic-similarity
161
+ name: Semantic Similarity
162
+ dataset:
163
+ name: stsb dev 256
164
+ type: stsb-dev-256
165
+ metrics:
166
+ - type: pearson_cosine
167
+ value: 0.8644706498119142
168
+ name: Pearson Cosine
169
+ - type: spearman_cosine
170
+ value: 0.873468734899321
171
+ name: Spearman Cosine
172
+ - task:
173
+ type: semantic-similarity
174
+ name: Semantic Similarity
175
+ dataset:
176
+ name: stsb dev 128
177
+ type: stsb-dev-128
178
+ metrics:
179
+ - type: pearson_cosine
180
+ value: 0.8591309130178328
181
+ name: Pearson Cosine
182
+ - type: spearman_cosine
183
+ value: 0.8700377378574327
184
+ name: Spearman Cosine
185
+ - task:
186
+ type: semantic-similarity
187
+ name: Semantic Similarity
188
+ dataset:
189
+ name: stsb dev 64
190
+ type: stsb-dev-64
191
+ metrics:
192
+ - type: pearson_cosine
193
+ value: 0.8479124810212979
194
+ name: Pearson Cosine
195
+ - type: spearman_cosine
196
+ value: 0.8655596653561272
197
+ name: Spearman Cosine
198
+ - task:
199
+ type: semantic-similarity
200
+ name: Semantic Similarity
201
+ dataset:
202
+ name: stsb test 768
203
+ type: stsb-test-768
204
+ metrics:
205
+ - type: pearson_cosine
206
+ value: 0.8455412308380735
207
+ name: Pearson Cosine
208
+ - type: spearman_cosine
209
+ value: 0.8535290217691063
210
+ name: Spearman Cosine
211
+ - task:
212
+ type: semantic-similarity
213
+ name: Semantic Similarity
214
+ dataset:
215
+ name: stsb test 512
216
+ type: stsb-test-512
217
+ metrics:
218
+ - type: pearson_cosine
219
+ value: 0.8464773608783734
220
+ name: Pearson Cosine
221
+ - type: spearman_cosine
222
+ value: 0.8553900248212041
223
+ name: Spearman Cosine
224
+ - task:
225
+ type: semantic-similarity
226
+ name: Semantic Similarity
227
+ dataset:
228
+ name: stsb test 256
229
+ type: stsb-test-256
230
+ metrics:
231
+ - type: pearson_cosine
232
+ value: 0.8443046458551826
233
+ name: Pearson Cosine
234
+ - type: spearman_cosine
235
+ value: 0.8550098621393595
236
+ name: Spearman Cosine
237
+ - task:
238
+ type: semantic-similarity
239
+ name: Semantic Similarity
240
+ dataset:
241
+ name: stsb test 128
242
+ type: stsb-test-128
243
+ metrics:
244
+ - type: pearson_cosine
245
+ value: 0.8363964421208214
246
+ name: Pearson Cosine
247
+ - type: spearman_cosine
248
+ value: 0.8511193715667303
249
+ name: Spearman Cosine
250
+ - task:
251
+ type: semantic-similarity
252
+ name: Semantic Similarity
253
+ dataset:
254
+ name: stsb test 64
255
+ type: stsb-test-64
256
+ metrics:
257
+ - type: pearson_cosine
258
+ value: 0.8235450515966374
259
+ name: Pearson Cosine
260
+ - type: spearman_cosine
261
+ value: 0.8460761238725121
262
+ name: Spearman Cosine
263
+ ---
264
+
265
+ # SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
266
+
267
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) on the [all-nli-tr](https://huggingface.co/datasets/emrecan/all-nli-tr) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
268
+
269
+ ## Model Details
270
+
271
+ ### Model Description
272
+ - **Model Type:** Sentence Transformer
273
+ - **Base model:** [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) <!-- at revision ca1791e0bcc104f6db161f27de1340241b13c5a4 -->
274
+ - **Maximum Sequence Length:** 512 tokens
275
+ - **Output Dimensionality:** 768 dimensions
276
+ - **Similarity Function:** Cosine Similarity
277
+ - **Training Dataset:**
278
+ - [all-nli-tr](https://huggingface.co/datasets/emrecan/all-nli-tr)
279
+ - **Language:** tr
280
+ <!-- - **License:** Unknown -->
281
+
282
+ ### Model Sources
283
+
284
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
285
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
286
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
287
+
288
+ ### Full Model Architecture
289
+
290
+ ```
291
+ SentenceTransformer(
292
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel
293
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
294
+ (2): Normalize()
295
+ )
296
+ ```
297
+
298
+ ## Usage
299
+
300
+ ### Direct Usage (Sentence Transformers)
301
+
302
+ First install the Sentence Transformers library:
303
+
304
+ ```bash
305
+ pip install -U sentence-transformers
306
+ ```
307
+
308
+ Then you can load this model and run inference.
309
+ ```python
310
+ from sentence_transformers import SentenceTransformer
311
+
312
+ # Download from the 🤗 Hub
313
+ model = SentenceTransformer("sentence_transformers_model_id")
314
+ # Run inference
315
+ sentences = [
316
+ 'Ve gerçekten, baba haklıydı, oğlu zaten her şeyi tecrübe etmişti, her şeyi denedi ve daha az ilgileniyordu.',
317
+ 'Oğlu her şeye olan ilgisini kaybediyordu.',
318
+ 'Baba oğlunun tecrübe için hala çok şey olduğunu biliyordu.',
319
+ ]
320
+ embeddings = model.encode(sentences)
321
+ print(embeddings.shape)
322
+ # [3, 768]
323
+
324
+ # Get the similarity scores for the embeddings
325
+ similarities = model.similarity(embeddings, embeddings)
326
+ print(similarities.shape)
327
+ # [3, 3]
328
+ ```
329
+
330
+ <!--
331
+ ### Direct Usage (Transformers)
332
+
333
+ <details><summary>Click to see the direct usage in Transformers</summary>
334
+
335
+ </details>
336
+ -->
337
+
338
+ <!--
339
+ ### Downstream Usage (Sentence Transformers)
340
+
341
+ You can finetune this model on your own dataset.
342
+
343
+ <details><summary>Click to expand</summary>
344
+
345
+ </details>
346
+ -->
347
+
348
+ <!--
349
+ ### Out-of-Scope Use
350
+
351
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
352
+ -->
353
+
354
+ ## Evaluation
355
+
356
+ ### Metrics
357
+
358
+ #### Triplet
359
+
360
+ * Dataset: `all-nli-tr-test`
361
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
362
+
363
+ | Metric | Value |
364
+ |:--------------------|:-----------|
365
+ | **cosine_accuracy** | **0.8966** |
366
+
367
+ #### Semantic Similarity
368
+
369
+ * Datasets: `sts-test`, `sts22-test`, `sts-dev-gte-multilingual-base`, `sts-test-gte-multilingual-base`, `sts-test`, `sts22-test`, `stsb-dev-768`, `stsb-dev-512`, `stsb-dev-256`, `stsb-dev-128`, `stsb-dev-64`, `stsb-test-768`, `stsb-test-512`, `stsb-test-256`, `stsb-test-128` and `stsb-test-64`
370
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
371
+
372
+ | Metric | sts-test | sts22-test | sts-dev-gte-multilingual-base | sts-test-gte-multilingual-base | stsb-dev-768 | stsb-dev-512 | stsb-dev-256 | stsb-dev-128 | stsb-dev-64 | stsb-test-768 | stsb-test-512 | stsb-test-256 | stsb-test-128 | stsb-test-64 |
373
+ |:--------------------|:---------|:-----------|:------------------------------|:-------------------------------|:-------------|:-------------|:-------------|:-------------|:------------|:--------------|:--------------|:--------------|:--------------|:-------------|
374
+ | pearson_cosine | 0.8134 | 0.6514 | 0.8387 | 0.8134 | 0.8703 | 0.8697 | 0.8645 | 0.8591 | 0.8479 | 0.8455 | 0.8465 | 0.8443 | 0.8364 | 0.8235 |
375
+ | **spearman_cosine** | **0.82** | **0.6827** | **0.8428** | **0.82** | **0.8748** | **0.8753** | **0.8735** | **0.87** | **0.8656** | **0.8535** | **0.8554** | **0.855** | **0.8511** | **0.8461** |
376
+
377
+ #### Triplet
378
+
379
+ * Dataset: `all-nli-tr-test`
380
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
381
+
382
+ | Metric | Value |
383
+ |:--------------------|:-----------|
384
+ | **cosine_accuracy** | **0.9352** |
385
+
386
+ <!--
387
+ ## Bias, Risks and Limitations
388
+
389
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
390
+ -->
391
+
392
+ <!--
393
+ ### Recommendations
394
+
395
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
396
+ -->
397
+
398
+ ## Training Details
399
+
400
+ ### Training Dataset
401
+
402
+ #### all-nli-tr
403
+
404
+ * Dataset: [all-nli-tr](https://huggingface.co/datasets/emrecan/all-nli-tr) at [daeabfb](https://huggingface.co/datasets/emrecan/all-nli-tr/tree/daeabfbc01f82757ab998bd23ce0ddfceaa5e24d)
405
+ * Size: 482,091 training samples
406
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
407
+ * Approximate statistics based on the first 1000 samples:
408
+ | | sentence1 | sentence2 | score |
409
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
410
+ | type | string | string | float |
411
+ | details | <ul><li>min: 6 tokens</li><li>mean: 10.51 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.47 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.23</li><li>max: 5.0</li></ul> |
412
+ * Samples:
413
+ | sentence1 | sentence2 | score |
414
+ |:----------------------------------------------------------|:-------------------------------------------------------------------|:-----------------|
415
+ | <code>Bir uçak kalkıyor.</code> | <code>Bir hava uçağı kalkıyor.</code> | <code>5.0</code> |
416
+ | <code>Bir adam büyük bir flüt çalıyor.</code> | <code>Bir adam flüt çalıyor.</code> | <code>3.8</code> |
417
+ | <code>Bir adam pizzaya rendelenmiş peynir yayıyor.</code> | <code>Bir adam pişmemiş pizzaya rendelenmiş peynir yayıyor.</code> | <code>3.8</code> |
418
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
419
+ ```json
420
+ {
421
+ "loss": "CoSENTLoss",
422
+ "matryoshka_dims": [
423
+ 768,
424
+ 512,
425
+ 256,
426
+ 128,
427
+ 64
428
+ ],
429
+ "matryoshka_weights": [
430
+ 1,
431
+ 1,
432
+ 1,
433
+ 1,
434
+ 1
435
+ ],
436
+ "n_dims_per_step": -1
437
+ }
438
+ ```
439
+
440
+ ### Evaluation Dataset
441
+
442
+ #### all-nli-tr
443
+
444
+ * Dataset: [all-nli-tr](https://huggingface.co/datasets/emrecan/all-nli-tr) at [daeabfb](https://huggingface.co/datasets/emrecan/all-nli-tr/tree/daeabfbc01f82757ab998bd23ce0ddfceaa5e24d)
445
+ * Size: 6,567 evaluation samples
446
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
447
+ * Approximate statistics based on the first 1000 samples:
448
+ | | sentence1 | sentence2 | score |
449
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
450
+ | type | string | string | float |
451
+ | details | <ul><li>min: 6 tokens</li><li>mean: 15.89 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.02 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.1</li><li>max: 5.0</li></ul> |
452
+ * Samples:
453
+ | sentence1 | sentence2 | score |
454
+ |:---------------------------------------------|:----------------------------------------------------|:------------------|
455
+ | <code>Şapkalı bir adam dans ediyor.</code> | <code>Sert şapka takan bir adam dans ediyor.</code> | <code>5.0</code> |
456
+ | <code>Küçük bir çocuk ata biniyor.</code> | <code>Bir çocuk ata biniyor.</code> | <code>4.75</code> |
457
+ | <code>Bir adam yılana fare yediriyor.</code> | <code>Adam yılana fare yediriyor.</code> | <code>5.0</code> |
458
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
459
+ ```json
460
+ {
461
+ "loss": "CoSENTLoss",
462
+ "matryoshka_dims": [
463
+ 768,
464
+ 512,
465
+ 256,
466
+ 128,
467
+ 64
468
+ ],
469
+ "matryoshka_weights": [
470
+ 1,
471
+ 1,
472
+ 1,
473
+ 1,
474
+ 1
475
+ ],
476
+ "n_dims_per_step": -1
477
+ }
478
+ ```
479
+
480
+ ### Training Hyperparameters
481
+ #### Non-Default Hyperparameters
482
+
483
+ - `eval_strategy`: steps
484
+ - `per_device_train_batch_size`: 32
485
+ - `per_device_eval_batch_size`: 32
486
+ - `learning_rate`: 1e-05
487
+ - `weight_decay`: 0.01
488
+ - `num_train_epochs`: 10
489
+ - `warmup_ratio`: 0.1
490
+ - `warmup_steps`: 144
491
+ - `bf16`: True
492
+
493
+ #### All Hyperparameters
494
+ <details><summary>Click to expand</summary>
495
+
496
+ - `overwrite_output_dir`: False
497
+ - `do_predict`: False
498
+ - `eval_strategy`: steps
499
+ - `prediction_loss_only`: True
500
+ - `per_device_train_batch_size`: 32
501
+ - `per_device_eval_batch_size`: 32
502
+ - `per_gpu_train_batch_size`: None
503
+ - `per_gpu_eval_batch_size`: None
504
+ - `gradient_accumulation_steps`: 1
505
+ - `eval_accumulation_steps`: None
506
+ - `torch_empty_cache_steps`: None
507
+ - `learning_rate`: 1e-05
508
+ - `weight_decay`: 0.01
509
+ - `adam_beta1`: 0.9
510
+ - `adam_beta2`: 0.999
511
+ - `adam_epsilon`: 1e-08
512
+ - `max_grad_norm`: 1.0
513
+ - `num_train_epochs`: 10
514
+ - `max_steps`: -1
515
+ - `lr_scheduler_type`: linear
516
+ - `lr_scheduler_kwargs`: {}
517
+ - `warmup_ratio`: 0.1
518
+ - `warmup_steps`: 144
519
+ - `log_level`: passive
520
+ - `log_level_replica`: warning
521
+ - `log_on_each_node`: True
522
+ - `logging_nan_inf_filter`: True
523
+ - `save_safetensors`: True
524
+ - `save_on_each_node`: False
525
+ - `save_only_model`: False
526
+ - `restore_callback_states_from_checkpoint`: False
527
+ - `no_cuda`: False
528
+ - `use_cpu`: False
529
+ - `use_mps_device`: False
530
+ - `seed`: 42
531
+ - `data_seed`: None
532
+ - `jit_mode_eval`: False
533
+ - `use_ipex`: False
534
+ - `bf16`: True
535
+ - `fp16`: False
536
+ - `fp16_opt_level`: O1
537
+ - `half_precision_backend`: auto
538
+ - `bf16_full_eval`: False
539
+ - `fp16_full_eval`: False
540
+ - `tf32`: None
541
+ - `local_rank`: 0
542
+ - `ddp_backend`: None
543
+ - `tpu_num_cores`: None
544
+ - `tpu_metrics_debug`: False
545
+ - `debug`: []
546
+ - `dataloader_drop_last`: False
547
+ - `dataloader_num_workers`: 0
548
+ - `dataloader_prefetch_factor`: None
549
+ - `past_index`: -1
550
+ - `disable_tqdm`: False
551
+ - `remove_unused_columns`: True
552
+ - `label_names`: None
553
+ - `load_best_model_at_end`: False
554
+ - `ignore_data_skip`: False
555
+ - `fsdp`: []
556
+ - `fsdp_min_num_params`: 0
557
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
558
+ - `fsdp_transformer_layer_cls_to_wrap`: None
559
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
560
+ - `deepspeed`: None
561
+ - `label_smoothing_factor`: 0.0
562
+ - `optim`: adamw_torch
563
+ - `optim_args`: None
564
+ - `adafactor`: False
565
+ - `group_by_length`: False
566
+ - `length_column_name`: length
567
+ - `ddp_find_unused_parameters`: None
568
+ - `ddp_bucket_cap_mb`: None
569
+ - `ddp_broadcast_buffers`: False
570
+ - `dataloader_pin_memory`: True
571
+ - `dataloader_persistent_workers`: False
572
+ - `skip_memory_metrics`: True
573
+ - `use_legacy_prediction_loop`: False
574
+ - `push_to_hub`: False
575
+ - `resume_from_checkpoint`: None
576
+ - `hub_model_id`: None
577
+ - `hub_strategy`: every_save
578
+ - `hub_private_repo`: None
579
+ - `hub_always_push`: False
580
+ - `gradient_checkpointing`: False
581
+ - `gradient_checkpointing_kwargs`: None
582
+ - `include_inputs_for_metrics`: False
583
+ - `include_for_metrics`: []
584
+ - `eval_do_concat_batches`: True
585
+ - `fp16_backend`: auto
586
+ - `push_to_hub_model_id`: None
587
+ - `push_to_hub_organization`: None
588
+ - `mp_parameters`:
589
+ - `auto_find_batch_size`: False
590
+ - `full_determinism`: False
591
+ - `torchdynamo`: None
592
+ - `ray_scope`: last
593
+ - `ddp_timeout`: 1800
594
+ - `torch_compile`: False
595
+ - `torch_compile_backend`: None
596
+ - `torch_compile_mode`: None
597
+ - `dispatch_batches`: None
598
+ - `split_batches`: None
599
+ - `include_tokens_per_second`: False
600
+ - `include_num_input_tokens_seen`: False
601
+ - `neftune_noise_alpha`: None
602
+ - `optim_target_modules`: None
603
+ - `batch_eval_metrics`: False
604
+ - `eval_on_start`: False
605
+ - `use_liger_kernel`: False
606
+ - `eval_use_gather_object`: False
607
+ - `average_tokens_across_devices`: False
608
+ - `prompts`: None
609
+ - `batch_sampler`: batch_sampler
610
+ - `multi_dataset_batch_sampler`: proportional
611
+
612
+ </details>
613
+
614
+ ### Training Logs
615
+ | Epoch | Step | Training Loss | Validation Loss | all-nli-tr-test_cosine_accuracy | sts-test_spearman_cosine | sts22-test_spearman_cosine | sts-dev-gte-multilingual-base_spearman_cosine | sts-test-gte-multilingual-base_spearman_cosine | stsb-dev-768_spearman_cosine | stsb-dev-512_spearman_cosine | stsb-dev-256_spearman_cosine | stsb-dev-128_spearman_cosine | stsb-dev-64_spearman_cosine | stsb-test-768_spearman_cosine | stsb-test-512_spearman_cosine | stsb-test-256_spearman_cosine | stsb-test-128_spearman_cosine | stsb-test-64_spearman_cosine |
616
+ |:------:|:----:|:-------------:|:---------------:|:-------------------------------:|:------------------------:|:--------------------------:|:---------------------------------------------:|:----------------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:----------------------------:|
617
+ | 0 | 0 | - | - | 0.8966 | 0.8041 | 0.6694 | - | - | - | - | - | - | - | - | - | - | - | - |
618
+ | 0.1327 | 1000 | 2.5299 | 3.3893 | - | - | - | 0.8318 | - | - | - | - | - | - | - | - | - | - | - |
619
+ | 0.2655 | 2000 | 2.1132 | 3.3050 | - | - | - | 0.8345 | - | - | - | - | - | - | - | - | - | - | - |
620
+ | 0.3982 | 3000 | 5.1488 | 2.7752 | - | - | - | 0.8481 | - | - | - | - | - | - | - | - | - | - | - |
621
+ | 0.5310 | 4000 | 5.4103 | 2.7242 | - | - | - | 0.8445 | - | - | - | - | - | - | - | - | - | - | - |
622
+ | 0.6637 | 5000 | 5.1896 | 2.6701 | - | - | - | 0.8451 | - | - | - | - | - | - | - | - | - | - | - |
623
+ | 0.7965 | 6000 | 5.0105 | 2.6489 | - | - | - | 0.8431 | - | - | - | - | - | - | - | - | - | - | - |
624
+ | 0.9292 | 7000 | 5.1059 | 2.6114 | - | - | - | 0.8428 | - | - | - | - | - | - | - | - | - | - | - |
625
+ | 1.0 | 7533 | - | - | 0.9352 | 0.8200 | 0.6827 | - | 0.8200 | - | - | - | - | - | - | - | - | - | - |
626
+ | 1.1111 | 200 | 34.2828 | 29.8737 | - | - | - | - | - | 0.8671 | 0.8671 | 0.8639 | 0.8606 | 0.8546 | - | - | - | - | - |
627
+ | 2.2222 | 400 | 28.038 | 28.8915 | - | - | - | - | - | 0.8740 | 0.8742 | 0.8720 | 0.8691 | 0.8648 | - | - | - | - | - |
628
+ | 3.3333 | 600 | 27.3829 | 29.3391 | - | - | - | - | - | 0.8747 | 0.8751 | 0.8728 | 0.8699 | 0.8653 | - | - | - | - | - |
629
+ | 4.4444 | 800 | 26.807 | 30.0090 | - | - | - | - | - | 0.8756 | 0.8761 | 0.8741 | 0.8710 | 0.8665 | - | - | - | - | - |
630
+ | 5.5556 | 1000 | 26.4543 | 30.5886 | - | - | - | - | - | 0.8753 | 0.8757 | 0.8739 | 0.8705 | 0.8662 | - | - | - | - | - |
631
+ | 6.6667 | 1200 | 26.0413 | 31.3750 | - | - | - | - | - | 0.8744 | 0.8751 | 0.8730 | 0.8698 | 0.8655 | - | - | - | - | - |
632
+ | 7.7778 | 1400 | 25.8221 | 31.6515 | - | - | - | - | - | 0.8752 | 0.8758 | 0.8739 | 0.8706 | 0.8661 | - | - | - | - | - |
633
+ | 8.8889 | 1600 | 25.6656 | 31.9805 | - | - | - | - | - | 0.8746 | 0.8752 | 0.8733 | 0.8700 | 0.8655 | - | - | - | - | - |
634
+ | 10.0 | 1800 | 25.5355 | 32.0454 | - | - | - | - | - | 0.8748 | 0.8753 | 0.8735 | 0.8700 | 0.8656 | 0.8535 | 0.8554 | 0.8550 | 0.8511 | 0.8461 |
635
+
636
+
637
+ ### Framework Versions
638
+ - Python: 3.11.11
639
+ - Sentence Transformers: 3.3.1
640
+ - Transformers: 4.49.0.dev0
641
+ - PyTorch: 2.5.1+cu121
642
+ - Accelerate: 1.2.1
643
+ - Datasets: 3.2.0
644
+ - Tokenizers: 0.21.0
645
+
646
+ ## Citation
647
+
648
+ ### BibTeX
649
+
650
+ #### Sentence Transformers
651
+ ```bibtex
652
+ @inproceedings{reimers-2019-sentence-bert,
653
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
654
+ author = "Reimers, Nils and Gurevych, Iryna",
655
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
656
+ month = "11",
657
+ year = "2019",
658
+ publisher = "Association for Computational Linguistics",
659
+ url = "https://arxiv.org/abs/1908.10084",
660
+ }
661
+ ```
662
+
663
+ #### MatryoshkaLoss
664
+ ```bibtex
665
+ @misc{kusupati2024matryoshka,
666
+ title={Matryoshka Representation Learning},
667
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
668
+ year={2024},
669
+ eprint={2205.13147},
670
+ archivePrefix={arXiv},
671
+ primaryClass={cs.LG}
672
+ }
673
+ ```
674
+
675
+ #### CoSENTLoss
676
+ ```bibtex
677
+ @online{kexuefm-8847,
678
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
679
+ author={Su Jianlin},
680
+ year={2022},
681
+ month={Jan},
682
+ url={https://kexue.fm/archives/8847},
683
+ }
684
+ ```
685
+
686
+ <!--
687
+ ## Glossary
688
+
689
+ *Clearly define terms in order to be accessible across audiences.*
690
+ -->
691
+
692
+ <!--
693
+ ## Model Card Authors
694
+
695
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
696
+ -->
697
+
698
+ <!--
699
+ ## Model Card Contact
700
+
701
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
702
+ -->
config.json ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Alibaba-NLP/gte-multilingual-base",
3
+ "architectures": [
4
+ "NewModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "Alibaba-NLP/new-impl--configuration.NewConfig",
9
+ "AutoModel": "Alibaba-NLP/new-impl--modeling.NewModel",
10
+ "AutoModelForMaskedLM": "Alibaba-NLP/new-impl--modeling.NewForMaskedLM",
11
+ "AutoModelForMultipleChoice": "Alibaba-NLP/new-impl--modeling.NewForMultipleChoice",
12
+ "AutoModelForQuestionAnswering": "Alibaba-NLP/new-impl--modeling.NewForQuestionAnswering",
13
+ "AutoModelForSequenceClassification": "Alibaba-NLP/new-impl--modeling.NewForSequenceClassification",
14
+ "AutoModelForTokenClassification": "Alibaba-NLP/new-impl--modeling.NewForTokenClassification"
15
+ },
16
+ "classifier_dropout": 0.0,
17
+ "hidden_act": "gelu",
18
+ "hidden_dropout_prob": 0.1,
19
+ "hidden_size": 768,
20
+ "id2label": {
21
+ "0": "LABEL_0"
22
+ },
23
+ "initializer_range": 0.02,
24
+ "intermediate_size": 3072,
25
+ "label2id": {
26
+ "LABEL_0": 0
27
+ },
28
+ "layer_norm_eps": 1e-12,
29
+ "layer_norm_type": "layer_norm",
30
+ "logn_attention_clip1": false,
31
+ "logn_attention_scale": false,
32
+ "max_position_embeddings": 8192,
33
+ "model_type": "new",
34
+ "num_attention_heads": 12,
35
+ "num_hidden_layers": 12,
36
+ "pack_qkv": true,
37
+ "pad_token_id": 1,
38
+ "position_embedding_type": "rope",
39
+ "rope_scaling": {
40
+ "factor": 8.0,
41
+ "type": "ntk"
42
+ },
43
+ "rope_theta": 20000,
44
+ "torch_dtype": "float32",
45
+ "transformers_version": "4.49.0.dev0",
46
+ "type_vocab_size": 1,
47
+ "unpad_inputs": false,
48
+ "use_memory_efficient_attention": false,
49
+ "vocab_size": 250048
50
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.49.0.dev0",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d032a10bdc6dd641ac27e804cd8720f60aef13f30235da48b1a3c11b869eb9d
3
+ size 1221487872
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "model_max_length": 8192,
51
+ "pad_token": "<pad>",
52
+ "sep_token": "</s>",
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }