Commit 
							
							·
						
						ad8c152
	
1
								Parent(s):
							
							6161c8b
								
Upload PPO LunarLander agent
Browse files- LunarLander-trained.zip +3 -0
 - LunarLander-trained/_stable_baselines3_version +1 -0
 - LunarLander-trained/data +94 -0
 - LunarLander-trained/policy.optimizer.pth +3 -0
 - LunarLander-trained/policy.pth +3 -0
 - LunarLander-trained/pytorch_variables.pth +3 -0
 - LunarLander-trained/system_info.txt +7 -0
 - README.md +37 -0
 - config.json +1 -0
 - replay.mp4 +0 -0
 - results.json +1 -0
 
    	
        LunarLander-trained.zip
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:9d313e02f8ce4b8f2350d45497a7bf8f23fdec342bc31dc5c032a091ca9d6409
         
     | 
| 3 | 
         
            +
            size 147129
         
     | 
    	
        LunarLander-trained/_stable_baselines3_version
    ADDED
    
    | 
         @@ -0,0 +1 @@ 
     | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            1.6.2
         
     | 
    	
        LunarLander-trained/data
    ADDED
    
    | 
         @@ -0,0 +1,94 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
                "policy_class": {
         
     | 
| 3 | 
         
            +
                    ":type:": "<class 'abc.ABCMeta'>",
         
     | 
| 4 | 
         
            +
                    ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
         
     | 
| 5 | 
         
            +
                    "__module__": "stable_baselines3.common.policies",
         
     | 
| 6 | 
         
            +
                    "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
         
     | 
| 7 | 
         
            +
                    "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5e7ac34d30>",
         
     | 
| 8 | 
         
            +
                    "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5e7ac34dc0>",
         
     | 
| 9 | 
         
            +
                    "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5e7ac34e50>",
         
     | 
| 10 | 
         
            +
                    "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5e7ac34ee0>",
         
     | 
| 11 | 
         
            +
                    "_build": "<function ActorCriticPolicy._build at 0x7f5e7ac34f70>",
         
     | 
| 12 | 
         
            +
                    "forward": "<function ActorCriticPolicy.forward at 0x7f5e7ac39040>",
         
     | 
| 13 | 
         
            +
                    "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5e7ac390d0>",
         
     | 
| 14 | 
         
            +
                    "_predict": "<function ActorCriticPolicy._predict at 0x7f5e7ac39160>",
         
     | 
| 15 | 
         
            +
                    "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5e7ac391f0>",
         
     | 
| 16 | 
         
            +
                    "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5e7ac39280>",
         
     | 
| 17 | 
         
            +
                    "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5e7ac39310>",
         
     | 
| 18 | 
         
            +
                    "__abstractmethods__": "frozenset()",
         
     | 
| 19 | 
         
            +
                    "_abc_impl": "<_abc_data object at 0x7f5e7ac30a20>"
         
     | 
| 20 | 
         
            +
                },
         
     | 
| 21 | 
         
            +
                "verbose": 1,
         
     | 
| 22 | 
         
            +
                "policy_kwargs": {},
         
     | 
| 23 | 
         
            +
                "observation_space": {
         
     | 
| 24 | 
         
            +
                    ":type:": "<class 'gym.spaces.box.Box'>",
         
     | 
| 25 | 
         
            +
                    ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
         
     | 
| 26 | 
         
            +
                    "dtype": "float32",
         
     | 
| 27 | 
         
            +
                    "_shape": [
         
     | 
| 28 | 
         
            +
                        8
         
     | 
| 29 | 
         
            +
                    ],
         
     | 
| 30 | 
         
            +
                    "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
         
     | 
| 31 | 
         
            +
                    "high": "[inf inf inf inf inf inf inf inf]",
         
     | 
| 32 | 
         
            +
                    "bounded_below": "[False False False False False False False False]",
         
     | 
| 33 | 
         
            +
                    "bounded_above": "[False False False False False False False False]",
         
     | 
| 34 | 
         
            +
                    "_np_random": null
         
     | 
| 35 | 
         
            +
                },
         
     | 
| 36 | 
         
            +
                "action_space": {
         
     | 
| 37 | 
         
            +
                    ":type:": "<class 'gym.spaces.discrete.Discrete'>",
         
     | 
| 38 | 
         
            +
                    ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
         
     | 
| 39 | 
         
            +
                    "n": 4,
         
     | 
| 40 | 
         
            +
                    "_shape": [],
         
     | 
| 41 | 
         
            +
                    "dtype": "int64",
         
     | 
| 42 | 
         
            +
                    "_np_random": null
         
     | 
| 43 | 
         
            +
                },
         
     | 
| 44 | 
         
            +
                "n_envs": 16,
         
     | 
| 45 | 
         
            +
                "num_timesteps": 1015808,
         
     | 
| 46 | 
         
            +
                "_total_timesteps": 1000000,
         
     | 
| 47 | 
         
            +
                "_num_timesteps_at_start": 0,
         
     | 
| 48 | 
         
            +
                "seed": null,
         
     | 
| 49 | 
         
            +
                "action_noise": null,
         
     | 
| 50 | 
         
            +
                "start_time": 1671372243622874923,
         
     | 
| 51 | 
         
            +
                "learning_rate": 0.0003,
         
     | 
| 52 | 
         
            +
                "tensorboard_log": null,
         
     | 
| 53 | 
         
            +
                "lr_schedule": {
         
     | 
| 54 | 
         
            +
                    ":type:": "<class 'function'>",
         
     | 
| 55 | 
         
            +
                    ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
         
     | 
| 56 | 
         
            +
                },
         
     | 
| 57 | 
         
            +
                "_last_obs": {
         
     | 
| 58 | 
         
            +
                    ":type:": "<class 'numpy.ndarray'>",
         
     | 
| 59 | 
         
            +
                    ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJr5s7tpyBw99rMFvU3AHL7+oxW96CVZPQAAAAAAAAAA+rFEvptIpj44eHs+KpaXviXZbzyMX7U9AAAAAAAAAABmVac8RJG2P4ebLT/+6k4+W0eVvDLPrb0AAAAAAAAAADPfEz4ty7c/4PP0PnHnq762PC0+U6suPgAAAAAAAAAApsAFvoUPhLsOl0C8nE6Kul2BxjxAJG07AACAPwAAgD+NFuw9YlimPi4Ezb1k+LW+CD6jO/MirLsAAAAAAAAAAOZMO74QuoU/ZiHlvgpADb+AmDW+8e+1vQAAAAAAAAAAZlupvBS+l7o2cCm1gLHCr4Uy9rr411w0AACAPwAAgD9AD7g9nUoqP0ywhD1hDee+/sOLPflNErwAAAAAAAAAAOZlDj03mag/BbTuPiK1LL90XR650sP5PQAAAAAAAAAAc1saPkPMAD0dXI29I9slvhrx9zuwwHI9AAAAAAAAAABCk6S+q6pHPzIRQb4jitq+C8WHvpu43j0AAAAAAAAAALq3QT7UAsO83iMMO6mpMrns7yq+uyJqugAAgD8AAIA/ZmpDPIN1tz+GRxk/r7j3PrduSLw269i9AAAAAAAAAACmeY+9LdUnP/7yFb1y6/K+bqZ5vR+2NbwAAAAAAAAAAFpnUD4+Bxk/pHE+PEArsb5A6Ag+Nb7BvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
         
     | 
| 60 | 
         
            +
                },
         
     | 
| 61 | 
         
            +
                "_last_episode_starts": {
         
     | 
| 62 | 
         
            +
                    ":type:": "<class 'numpy.ndarray'>",
         
     | 
| 63 | 
         
            +
                    ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
         
     | 
| 64 | 
         
            +
                },
         
     | 
| 65 | 
         
            +
                "_last_original_obs": null,
         
     | 
| 66 | 
         
            +
                "_episode_num": 0,
         
     | 
| 67 | 
         
            +
                "use_sde": false,
         
     | 
| 68 | 
         
            +
                "sde_sample_freq": -1,
         
     | 
| 69 | 
         
            +
                "_current_progress_remaining": -0.015808000000000044,
         
     | 
| 70 | 
         
            +
                "ep_info_buffer": {
         
     | 
| 71 | 
         
            +
                    ":type:": "<class 'collections.deque'>",
         
     | 
| 72 | 
         
            +
                    ":serialized:": "gAWVPhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9S9JZcpPcECUhpRSlIwBbJRLzowBdJRHQJodP5k9U0h1fZQoaAZoCWgPQwgtCOV9HHtzQJSGlFKUaBVNHwFoFkdAmh3ixFAmiXV9lChoBmgJaA9DCOXyH9KveHJAlIaUUpRoFUvOaBZHQJoeuOBDohZ1fZQoaAZoCWgPQwiSWFLuvs9lQJSGlFKUaBVN6ANoFkdAmh66d1+y7nV9lChoBmgJaA9DCBNgWP78qW9AlIaUUpRoFUvSaBZHQJoe81O0svt1fZQoaAZoCWgPQwjzA1d5gqhxQJSGlFKUaBVLt2gWR0CaH6jz7MxHdX2UKGgGaAloD0MIyv55GrACckCUhpRSlGgVTRIBaBZHQJoh7s7dSEV1fZQoaAZoCWgPQwiV9DC0eppwQJSGlFKUaBVL+WgWR0CaI1cAR02cdX2UKGgGaAloD0MIvVKWIY7UcECUhpRSlGgVS79oFkdAmiN5s41gpnV9lChoBmgJaA9DCNFbPLynonBAlIaUUpRoFU0SAWgWR0CaI5aA4GUwdX2UKGgGaAloD0MIV7H4TaH7cUCUhpRSlGgVS/xoFkdAmiQUkv9LpXV9lChoBmgJaA9DCM41zNA4YnJAlIaUUpRoFUvPaBZHQJoll0+1Sfl1fZQoaAZoCWgPQwjFVzuKM/NyQJSGlFKUaBVNLwFoFkdAmiWU0BOpKnV9lChoBmgJaA9DCDaVRWGXOW1AlIaUUpRoFUvPaBZHQJol2E+Pikx1fZQoaAZoCWgPQwgOTkS/dudwQJSGlFKUaBVL+mgWR0CaJiVpKzzFdX2UKGgGaAloD0MII0kQrkCvcECUhpRSlGgVS/RoFkdAmifdRJmNBHV9lChoBmgJaA9DCArcuptnZXFAlIaUUpRoFUvXaBZHQJopUyCWeH11fZQoaAZoCWgPQwj3zf3V481uQJSGlFKUaBVL0mgWR0CaK280k4WDdX2UKGgGaAloD0MI2zUhrTFXYECUhpRSlGgVTegDaBZHQJorjpHI6sB1fZQoaAZoCWgPQwjEI/Hy9NxuQJSGlFKUaBVLyGgWR0CaLJDVpbljdX2UKGgGaAloD0MIEsE4uLRhckCUhpRSlGgVTRcBaBZHQJotIo7V8Tl1fZQoaAZoCWgPQwhXem02lmhyQJSGlFKUaBVL1GgWR0CaLVYcebNKdX2UKGgGaAloD0MISzlf7D2YcUCUhpRSlGgVTRkBaBZHQJotVm/WUbF1fZQoaAZoCWgPQwgdy7vqgRpwQJSGlFKUaBVL82gWR0CaLiDej2zwdX2UKGgGaAloD0MInkSEf5EJYECUhpRSlGgVTegDaBZHQJouiSNfgJl1fZQoaAZoCWgPQwiIY13cRptwQJSGlFKUaBVL5WgWR0CaL9wrlNlAdX2UKGgGaAloD0MIF/Ayw8ZdcUCUhpRSlGgVS/JoFkdAmjHEDEFW4nV9lChoBmgJaA9DCFoqb0c4Dm5AlIaUUpRoFUvcaBZHQJozA2qDK5l1fZQoaAZoCWgPQwgqc/ONqCVzQJSGlFKUaBVL32gWR0CaM0FGoaUBdX2UKGgGaAloD0MItVAyOXVbcECUhpRSlGgVS9poFkdAmjT5r+Hae3V9lChoBmgJaA9DCJV/La9cYWRAlIaUUpRoFU3oA2gWR0CaNR89Oh0ydX2UKGgGaAloD0MIy/W2mYr9bkCUhpRSlGgVS+JoFkdAmjVPA0sOG3V9lChoBmgJaA9DCCdok8PnS3FAlIaUUpRoFUvwaBZHQJo1mmhufmN1fZQoaAZoCWgPQwgHeqhtwzNyQJSGlFKUaBVL12gWR0CaN9q5sj3VdX2UKGgGaAloD0MIPpP983SxcECUhpRSlGgVTTwBaBZHQJo5ydSVGCt1fZQoaAZoCWgPQwhMwRpn08hlQJSGlFKUaBVN6ANoFkdAmjqvMr3CbnV9lChoBmgJaA9DCF5m2CiryHFAlIaUUpRoFUvIaBZHQJo64fHPu5V1fZQoaAZoCWgPQwiSrS6nROtwQJSGlFKUaBVL0mgWR0CaO38e0XxfdX2UKGgGaAloD0MIBOj3/RuXZUCUhpRSlGgVTegDaBZHQJo706BAfMh1fZQoaAZoCWgPQwgCvAUSFEhwQJSGlFKUaBVLy2gWR0CaPVgrpaA4dX2UKGgGaAloD0MI16IFaNvDcUCUhpRSlGgVS8ZoFkdAmj1+j/MnqnV9lChoBmgJaA9DCJF7urpjkG1AlIaUUpRoFUvaaBZHQJo9vOMVDa51fZQoaAZoCWgPQwglQE0tW3dwQJSGlFKUaBVL3mgWR0CaPcdKdxyXdX2UKGgGaAloD0MIIuF7f0MUcECUhpRSlGgVTVsBaBZHQJo/JrXUYsN1fZQoaAZoCWgPQwjrkJvhBjRzQJSGlFKUaBVL5WgWR0CaQI7eVLSNdX2UKGgGaAloD0MIB5j5Dn5maECUhpRSlGgVTegDaBZHQJpCZRO1v2p1fZQoaAZoCWgPQwj4+e/BK1lyQJSGlFKUaBVL4GgWR0CaQxKBNEgGdX2UKGgGaAloD0MIg4dp39wVckCUhpRSlGgVTQQBaBZHQJpDYJjUd7x1fZQoaAZoCWgPQwiN7iB25qVxQJSGlFKUaBVL9mgWR0CaQ7MzMzMzdX2UKGgGaAloD0MIMBAEyBDdcECUhpRSlGgVS/RoFkdAmkRiuyNXHXV9lChoBmgJaA9DCBBAahMnLnBAlIaUUpRoFU1PAmgWR0CaRGBeXzDodX2UKGgGaAloD0MIVp3VAvurcECUhpRSlGgVTQYBaBZHQJpG6ejEehh1fZQoaAZoCWgPQwi4rS08bzhwQJSGlFKUaBVL2GgWR0CaRvz8P4EfdX2UKGgGaAloD0MIaTf6mA9LXkCUhpRSlGgVTegDaBZHQJpIAMXrMTx1fZQoaAZoCWgPQwi5pkBmp3VxQJSGlFKUaBVNHQFoFkdAmkgUi+tbLXV9lChoBmgJaA9DCFvSUQ4mwHFAlIaUUpRoFU0hAWgWR0CaSEKO1fE5dX2UKGgGaAloD0MIOpM2VXcnb0CUhpRSlGgVS+xoFkdAmklSZfD1oXV9lChoBmgJaA9DCJvmHadoKG5AlIaUUpRoFUvQaBZHQJpKKlLvkR11fZQoaAZoCWgPQwiG4/kMKOxkQJSGlFKUaBVN6ANoFkdAmkq6TSsr/nV9lChoBmgJaA9DCIy7QbRWbG5AlIaUUpRoFUvXaBZHQJpLBaA4GUx1fZQoaAZoCWgPQwgEWU+tfgdxQJSGlFKUaBVL0WgWR0CaS2Xm/336dX2UKGgGaAloD0MICLDIr1/PcECUhpRSlGgVS+doFkdAmky4mb9ZR3V9lChoBmgJaA9DCOVjd4GSxGxAlIaUUpRoFUvSaBZHQJpOUysS00F1fZQoaAZoCWgPQwgY0At3rrhwQJSGlFKUaBVLuGgWR0CaTmJ0GNaRdX2UKGgGaAloD0MIWpwxzEm2cECUhpRSlGgVTR8BaBZHQJpOqYlY2bZ1fZQoaAZoCWgPQwjCobd4OJNyQJSGlFKUaBVNSAFoFkdAmk8dhE0BO3V9lChoBmgJaA9DCBFV+DO8R3FAlIaUUpRoFUv7aBZHQJpPxpcophF1fZQoaAZoCWgPQwhKfsSvmKhwQJSGlFKUaBVLv2gWR0CaUJoTwlSkdX2UKGgGaAloD0MIisdFtQhIb0CUhpRSlGgVS/poFkdAmlDaoybhFXV9lChoBmgJaA9DCNnts8pMlmJAlIaUUpRoFU3oA2gWR0CaUORcu8K5dX2UKGgGaAloD0MI7nvUX+/5cUCUhpRSlGgVTQQBaBZHQJpRAWN3np11fZQoaAZoCWgPQwhgHccPVfpwQJSGlFKUaBVL2GgWR0CaUdQcPvrodX2UKGgGaAloD0MI8BZIUPyObkCUhpRSlGgVS+ZoFkdAmlKDZlFtsXV9lChoBmgJaA9DCBrAWyBB7m9AlIaUUpRoFUvvaBZHQJpTF0/4Zdh1fZQoaAZoCWgPQwj7IMuCCVpyQJSGlFKUaBVNCQFoFkdAmlUphrnDBXV9lChoBmgJaA9DCPWCT3OyEXBAlIaUUpRoFUvfaBZHQJpVq/Zdv891fZQoaAZoCWgPQwjsZ7EUSedwQJSGlFKUaBVL8GgWR0CaVe6Skj5cdX2UKGgGaAloD0MI4pANpIvhcECUhpRSlGgVS/toFkdAmlZVBlcyFnV9lChoBmgJaA9DCIfD0sCP5XBAlIaUUpRoFUvuaBZHQJpWml67dzp1fZQoaAZoCWgPQwjTFtf4zEtvQJSGlFKUaBVL1mgWR0CaV36wt8NQdX2UKGgGaAloD0MIem6hKxHgb0CUhpRSlGgVS+FoFkdAmlfVkpZwGXV9lChoBmgJaA9DCKfOo+I/RHFAlIaUUpRoFU0aAWgWR0CaWKZl4C6pdX2UKGgGaAloD0MIo+nsZPDZcUCUhpRSlGgVTQIBaBZHQJpZIeJYT0x1fZQoaAZoCWgPQwjZQSWuY7JwQJSGlFKUaBVNIAFoFkdAmlnVJ+UhV3V9lChoBmgJaA9DCExvfy5awXBAlIaUUpRoFUv4aBZHQJpZ3kp7TlV1fZQoaAZoCWgPQwgxDFhyFattQJSGlFKUaBVL42gWR0CaWer/bTMJdX2UKGgGaAloD0MIDK8kee78cUCUhpRSlGgVS/JoFkdAmlr2FajesXV9lChoBmgJaA9DCAQAx569EXFAlIaUUpRoFUvEaBZHQJpcUXGff411fZQoaAZoCWgPQwgLQQ5KmNVvQJSGlFKUaBVL0GgWR0CaXHXeFcptdX2UKGgGaAloD0MI9ihcj0KPcECUhpRSlGgVS91oFkdAml3cBQvYe3V9lChoBmgJaA9DCBXGFoIc6V5AlIaUUpRoFU3oA2gWR0CaXhXYlIEsdX2UKGgGaAloD0MIzO80mXGucUCUhpRSlGgVTQIBaBZHQJpeycurZJ11fZQoaAZoCWgPQwjOwwlMJ/twQJSGlFKUaBVL4WgWR0CaXzywfQrudX2UKGgGaAloD0MIhel7DUGEY0CUhpRSlGgVTegDaBZHQJpfPfTCtRx1fZQoaAZoCWgPQwh5eTpXFA1yQJSGlFKUaBVL8mgWR0CaX3CXQdCFdX2UKGgGaAloD0MIOpShKiZzcECUhpRSlGgVS+ZoFkdAmmAOIEbHZXV9lChoBmgJaA9DCE7QJoePLXJAlIaUUpRoFUvOaBZHQJpgR+XqqwR1fZQoaAZoCWgPQwgB3CxebH5wQJSGlFKUaBVL4mgWR0CaYONmUW2xdX2UKGgGaAloD0MIFNBE2LBAckCUhpRSlGgVS+loFkdAmmEF3MY/FHV9lChoBmgJaA9DCLVrQlpjom9AlIaUUpRoFUv8aBZHQJphCgSOBDp1ZS4="
         
     | 
| 73 | 
         
            +
                },
         
     | 
| 74 | 
         
            +
                "ep_success_buffer": {
         
     | 
| 75 | 
         
            +
                    ":type:": "<class 'collections.deque'>",
         
     | 
| 76 | 
         
            +
                    ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
         
     | 
| 77 | 
         
            +
                },
         
     | 
| 78 | 
         
            +
                "_n_updates": 310,
         
     | 
| 79 | 
         
            +
                "n_steps": 2048,
         
     | 
| 80 | 
         
            +
                "gamma": 0.99,
         
     | 
| 81 | 
         
            +
                "gae_lambda": 0.95,
         
     | 
| 82 | 
         
            +
                "ent_coef": 0.0,
         
     | 
| 83 | 
         
            +
                "vf_coef": 0.5,
         
     | 
| 84 | 
         
            +
                "max_grad_norm": 0.5,
         
     | 
| 85 | 
         
            +
                "batch_size": 64,
         
     | 
| 86 | 
         
            +
                "n_epochs": 10,
         
     | 
| 87 | 
         
            +
                "clip_range": {
         
     | 
| 88 | 
         
            +
                    ":type:": "<class 'function'>",
         
     | 
| 89 | 
         
            +
                    ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
         
     | 
| 90 | 
         
            +
                },
         
     | 
| 91 | 
         
            +
                "clip_range_vf": null,
         
     | 
| 92 | 
         
            +
                "normalize_advantage": true,
         
     | 
| 93 | 
         
            +
                "target_kl": null
         
     | 
| 94 | 
         
            +
            }
         
     | 
    	
        LunarLander-trained/policy.optimizer.pth
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:d257ae20cf6c5e2e66b2a1b17c2f2fac12d971b404c839870a829e68be6a4127
         
     | 
| 3 | 
         
            +
            size 87929
         
     | 
    	
        LunarLander-trained/policy.pth
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:ba92bb28e6c1e541fc8686583bebf104c0e1e9ab3c69e3391f19a2f2f50bb43d
         
     | 
| 3 | 
         
            +
            size 43201
         
     | 
    	
        LunarLander-trained/pytorch_variables.pth
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
         
     | 
| 3 | 
         
            +
            size 431
         
     | 
    	
        LunarLander-trained/system_info.txt
    ADDED
    
    | 
         @@ -0,0 +1,7 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
         
     | 
| 2 | 
         
            +
            Python: 3.8.16
         
     | 
| 3 | 
         
            +
            Stable-Baselines3: 1.6.2
         
     | 
| 4 | 
         
            +
            PyTorch: 1.13.0+cu116
         
     | 
| 5 | 
         
            +
            GPU Enabled: True
         
     | 
| 6 | 
         
            +
            Numpy: 1.21.6
         
     | 
| 7 | 
         
            +
            Gym: 0.21.0
         
     | 
    	
        README.md
    ADDED
    
    | 
         @@ -0,0 +1,37 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            ---
         
     | 
| 2 | 
         
            +
            library_name: stable-baselines3
         
     | 
| 3 | 
         
            +
            tags:
         
     | 
| 4 | 
         
            +
            - LunarLander-v2
         
     | 
| 5 | 
         
            +
            - deep-reinforcement-learning
         
     | 
| 6 | 
         
            +
            - reinforcement-learning
         
     | 
| 7 | 
         
            +
            - stable-baselines3
         
     | 
| 8 | 
         
            +
            model-index:
         
     | 
| 9 | 
         
            +
            - name: PPO
         
     | 
| 10 | 
         
            +
              results:
         
     | 
| 11 | 
         
            +
              - task:
         
     | 
| 12 | 
         
            +
                  type: reinforcement-learning
         
     | 
| 13 | 
         
            +
                  name: reinforcement-learning
         
     | 
| 14 | 
         
            +
                dataset:
         
     | 
| 15 | 
         
            +
                  name: LunarLander-v2
         
     | 
| 16 | 
         
            +
                  type: LunarLander-v2
         
     | 
| 17 | 
         
            +
                metrics:
         
     | 
| 18 | 
         
            +
                - type: mean_reward
         
     | 
| 19 | 
         
            +
                  value: 250.51 +/- 35.05
         
     | 
| 20 | 
         
            +
                  name: mean_reward
         
     | 
| 21 | 
         
            +
                  verified: false
         
     | 
| 22 | 
         
            +
            ---
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
            # **PPO** Agent playing **LunarLander-v2**
         
     | 
| 25 | 
         
            +
            This is a trained model of a **PPO** agent playing **LunarLander-v2**
         
     | 
| 26 | 
         
            +
            using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
            ## Usage (with Stable-baselines3)
         
     | 
| 29 | 
         
            +
            TODO: Add your code
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
            ```python
         
     | 
| 33 | 
         
            +
            from stable_baselines3 import ...
         
     | 
| 34 | 
         
            +
            from huggingface_sb3 import load_from_hub
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
            ...
         
     | 
| 37 | 
         
            +
            ```
         
     | 
    	
        config.json
    ADDED
    
    | 
         @@ -0,0 +1 @@ 
     | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5e7ac34d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5e7ac34dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5e7ac34e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5e7ac34ee0>", "_build": "<function ActorCriticPolicy._build at 0x7f5e7ac34f70>", "forward": "<function ActorCriticPolicy.forward at 0x7f5e7ac39040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5e7ac390d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5e7ac39160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5e7ac391f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5e7ac39280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5e7ac39310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5e7ac30a20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671372243622874923, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJr5s7tpyBw99rMFvU3AHL7+oxW96CVZPQAAAAAAAAAA+rFEvptIpj44eHs+KpaXviXZbzyMX7U9AAAAAAAAAABmVac8RJG2P4ebLT/+6k4+W0eVvDLPrb0AAAAAAAAAADPfEz4ty7c/4PP0PnHnq762PC0+U6suPgAAAAAAAAAApsAFvoUPhLsOl0C8nE6Kul2BxjxAJG07AACAPwAAgD+NFuw9YlimPi4Ezb1k+LW+CD6jO/MirLsAAAAAAAAAAOZMO74QuoU/ZiHlvgpADb+AmDW+8e+1vQAAAAAAAAAAZlupvBS+l7o2cCm1gLHCr4Uy9rr411w0AACAPwAAgD9AD7g9nUoqP0ywhD1hDee+/sOLPflNErwAAAAAAAAAAOZlDj03mag/BbTuPiK1LL90XR650sP5PQAAAAAAAAAAc1saPkPMAD0dXI29I9slvhrx9zuwwHI9AAAAAAAAAABCk6S+q6pHPzIRQb4jitq+C8WHvpu43j0AAAAAAAAAALq3QT7UAsO83iMMO6mpMrns7yq+uyJqugAAgD8AAIA/ZmpDPIN1tz+GRxk/r7j3PrduSLw269i9AAAAAAAAAACmeY+9LdUnP/7yFb1y6/K+bqZ5vR+2NbwAAAAAAAAAAFpnUD4+Bxk/pHE+PEArsb5A6Ag+Nb7BvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9S9JZcpPcECUhpRSlIwBbJRLzowBdJRHQJodP5k9U0h1fZQoaAZoCWgPQwgtCOV9HHtzQJSGlFKUaBVNHwFoFkdAmh3ixFAmiXV9lChoBmgJaA9DCOXyH9KveHJAlIaUUpRoFUvOaBZHQJoeuOBDohZ1fZQoaAZoCWgPQwiSWFLuvs9lQJSGlFKUaBVN6ANoFkdAmh66d1+y7nV9lChoBmgJaA9DCBNgWP78qW9AlIaUUpRoFUvSaBZHQJoe81O0svt1fZQoaAZoCWgPQwjzA1d5gqhxQJSGlFKUaBVLt2gWR0CaH6jz7MxHdX2UKGgGaAloD0MIyv55GrACckCUhpRSlGgVTRIBaBZHQJoh7s7dSEV1fZQoaAZoCWgPQwiV9DC0eppwQJSGlFKUaBVL+WgWR0CaI1cAR02cdX2UKGgGaAloD0MIvVKWIY7UcECUhpRSlGgVS79oFkdAmiN5s41gpnV9lChoBmgJaA9DCNFbPLynonBAlIaUUpRoFU0SAWgWR0CaI5aA4GUwdX2UKGgGaAloD0MIV7H4TaH7cUCUhpRSlGgVS/xoFkdAmiQUkv9LpXV9lChoBmgJaA9DCM41zNA4YnJAlIaUUpRoFUvPaBZHQJoll0+1Sfl1fZQoaAZoCWgPQwjFVzuKM/NyQJSGlFKUaBVNLwFoFkdAmiWU0BOpKnV9lChoBmgJaA9DCDaVRWGXOW1AlIaUUpRoFUvPaBZHQJol2E+Pikx1fZQoaAZoCWgPQwgOTkS/dudwQJSGlFKUaBVL+mgWR0CaJiVpKzzFdX2UKGgGaAloD0MII0kQrkCvcECUhpRSlGgVS/RoFkdAmifdRJmNBHV9lChoBmgJaA9DCArcuptnZXFAlIaUUpRoFUvXaBZHQJopUyCWeH11fZQoaAZoCWgPQwj3zf3V481uQJSGlFKUaBVL0mgWR0CaK280k4WDdX2UKGgGaAloD0MI2zUhrTFXYECUhpRSlGgVTegDaBZHQJorjpHI6sB1fZQoaAZoCWgPQwjEI/Hy9NxuQJSGlFKUaBVLyGgWR0CaLJDVpbljdX2UKGgGaAloD0MIEsE4uLRhckCUhpRSlGgVTRcBaBZHQJotIo7V8Tl1fZQoaAZoCWgPQwhXem02lmhyQJSGlFKUaBVL1GgWR0CaLVYcebNKdX2UKGgGaAloD0MISzlf7D2YcUCUhpRSlGgVTRkBaBZHQJotVm/WUbF1fZQoaAZoCWgPQwgdy7vqgRpwQJSGlFKUaBVL82gWR0CaLiDej2zwdX2UKGgGaAloD0MInkSEf5EJYECUhpRSlGgVTegDaBZHQJouiSNfgJl1fZQoaAZoCWgPQwiIY13cRptwQJSGlFKUaBVL5WgWR0CaL9wrlNlAdX2UKGgGaAloD0MIF/Ayw8ZdcUCUhpRSlGgVS/JoFkdAmjHEDEFW4nV9lChoBmgJaA9DCFoqb0c4Dm5AlIaUUpRoFUvcaBZHQJozA2qDK5l1fZQoaAZoCWgPQwgqc/ONqCVzQJSGlFKUaBVL32gWR0CaM0FGoaUBdX2UKGgGaAloD0MItVAyOXVbcECUhpRSlGgVS9poFkdAmjT5r+Hae3V9lChoBmgJaA9DCJV/La9cYWRAlIaUUpRoFU3oA2gWR0CaNR89Oh0ydX2UKGgGaAloD0MIy/W2mYr9bkCUhpRSlGgVS+JoFkdAmjVPA0sOG3V9lChoBmgJaA9DCCdok8PnS3FAlIaUUpRoFUvwaBZHQJo1mmhufmN1fZQoaAZoCWgPQwgHeqhtwzNyQJSGlFKUaBVL12gWR0CaN9q5sj3VdX2UKGgGaAloD0MIPpP983SxcECUhpRSlGgVTTwBaBZHQJo5ydSVGCt1fZQoaAZoCWgPQwhMwRpn08hlQJSGlFKUaBVN6ANoFkdAmjqvMr3CbnV9lChoBmgJaA9DCF5m2CiryHFAlIaUUpRoFUvIaBZHQJo64fHPu5V1fZQoaAZoCWgPQwiSrS6nROtwQJSGlFKUaBVL0mgWR0CaO38e0XxfdX2UKGgGaAloD0MIBOj3/RuXZUCUhpRSlGgVTegDaBZHQJo706BAfMh1fZQoaAZoCWgPQwgCvAUSFEhwQJSGlFKUaBVLy2gWR0CaPVgrpaA4dX2UKGgGaAloD0MI16IFaNvDcUCUhpRSlGgVS8ZoFkdAmj1+j/MnqnV9lChoBmgJaA9DCJF7urpjkG1AlIaUUpRoFUvaaBZHQJo9vOMVDa51fZQoaAZoCWgPQwglQE0tW3dwQJSGlFKUaBVL3mgWR0CaPcdKdxyXdX2UKGgGaAloD0MIIuF7f0MUcECUhpRSlGgVTVsBaBZHQJo/JrXUYsN1fZQoaAZoCWgPQwjrkJvhBjRzQJSGlFKUaBVL5WgWR0CaQI7eVLSNdX2UKGgGaAloD0MIB5j5Dn5maECUhpRSlGgVTegDaBZHQJpCZRO1v2p1fZQoaAZoCWgPQwj4+e/BK1lyQJSGlFKUaBVL4GgWR0CaQxKBNEgGdX2UKGgGaAloD0MIg4dp39wVckCUhpRSlGgVTQQBaBZHQJpDYJjUd7x1fZQoaAZoCWgPQwiN7iB25qVxQJSGlFKUaBVL9mgWR0CaQ7MzMzMzdX2UKGgGaAloD0MIMBAEyBDdcECUhpRSlGgVS/RoFkdAmkRiuyNXHXV9lChoBmgJaA9DCBBAahMnLnBAlIaUUpRoFU1PAmgWR0CaRGBeXzDodX2UKGgGaAloD0MIVp3VAvurcECUhpRSlGgVTQYBaBZHQJpG6ejEehh1fZQoaAZoCWgPQwi4rS08bzhwQJSGlFKUaBVL2GgWR0CaRvz8P4EfdX2UKGgGaAloD0MIaTf6mA9LXkCUhpRSlGgVTegDaBZHQJpIAMXrMTx1fZQoaAZoCWgPQwi5pkBmp3VxQJSGlFKUaBVNHQFoFkdAmkgUi+tbLXV9lChoBmgJaA9DCFvSUQ4mwHFAlIaUUpRoFU0hAWgWR0CaSEKO1fE5dX2UKGgGaAloD0MIOpM2VXcnb0CUhpRSlGgVS+xoFkdAmklSZfD1oXV9lChoBmgJaA9DCJvmHadoKG5AlIaUUpRoFUvQaBZHQJpKKlLvkR11fZQoaAZoCWgPQwiG4/kMKOxkQJSGlFKUaBVN6ANoFkdAmkq6TSsr/nV9lChoBmgJaA9DCIy7QbRWbG5AlIaUUpRoFUvXaBZHQJpLBaA4GUx1fZQoaAZoCWgPQwgEWU+tfgdxQJSGlFKUaBVL0WgWR0CaS2Xm/336dX2UKGgGaAloD0MICLDIr1/PcECUhpRSlGgVS+doFkdAmky4mb9ZR3V9lChoBmgJaA9DCOVjd4GSxGxAlIaUUpRoFUvSaBZHQJpOUysS00F1fZQoaAZoCWgPQwgY0At3rrhwQJSGlFKUaBVLuGgWR0CaTmJ0GNaRdX2UKGgGaAloD0MIWpwxzEm2cECUhpRSlGgVTR8BaBZHQJpOqYlY2bZ1fZQoaAZoCWgPQwjCobd4OJNyQJSGlFKUaBVNSAFoFkdAmk8dhE0BO3V9lChoBmgJaA9DCBFV+DO8R3FAlIaUUpRoFUv7aBZHQJpPxpcophF1fZQoaAZoCWgPQwhKfsSvmKhwQJSGlFKUaBVLv2gWR0CaUJoTwlSkdX2UKGgGaAloD0MIisdFtQhIb0CUhpRSlGgVS/poFkdAmlDaoybhFXV9lChoBmgJaA9DCNnts8pMlmJAlIaUUpRoFU3oA2gWR0CaUORcu8K5dX2UKGgGaAloD0MI7nvUX+/5cUCUhpRSlGgVTQQBaBZHQJpRAWN3np11fZQoaAZoCWgPQwhgHccPVfpwQJSGlFKUaBVL2GgWR0CaUdQcPvrodX2UKGgGaAloD0MI8BZIUPyObkCUhpRSlGgVS+ZoFkdAmlKDZlFtsXV9lChoBmgJaA9DCBrAWyBB7m9AlIaUUpRoFUvvaBZHQJpTF0/4Zdh1fZQoaAZoCWgPQwj7IMuCCVpyQJSGlFKUaBVNCQFoFkdAmlUphrnDBXV9lChoBmgJaA9DCPWCT3OyEXBAlIaUUpRoFUvfaBZHQJpVq/Zdv891fZQoaAZoCWgPQwjsZ7EUSedwQJSGlFKUaBVL8GgWR0CaVe6Skj5cdX2UKGgGaAloD0MI4pANpIvhcECUhpRSlGgVS/toFkdAmlZVBlcyFnV9lChoBmgJaA9DCIfD0sCP5XBAlIaUUpRoFUvuaBZHQJpWml67dzp1fZQoaAZoCWgPQwjTFtf4zEtvQJSGlFKUaBVL1mgWR0CaV36wt8NQdX2UKGgGaAloD0MIem6hKxHgb0CUhpRSlGgVS+FoFkdAmlfVkpZwGXV9lChoBmgJaA9DCKfOo+I/RHFAlIaUUpRoFU0aAWgWR0CaWKZl4C6pdX2UKGgGaAloD0MIo+nsZPDZcUCUhpRSlGgVTQIBaBZHQJpZIeJYT0x1fZQoaAZoCWgPQwjZQSWuY7JwQJSGlFKUaBVNIAFoFkdAmlnVJ+UhV3V9lChoBmgJaA9DCExvfy5awXBAlIaUUpRoFUv4aBZHQJpZ3kp7TlV1fZQoaAZoCWgPQwgxDFhyFattQJSGlFKUaBVL42gWR0CaWer/bTMJdX2UKGgGaAloD0MIDK8kee78cUCUhpRSlGgVS/JoFkdAmlr2FajesXV9lChoBmgJaA9DCAQAx569EXFAlIaUUpRoFUvEaBZHQJpcUXGff411fZQoaAZoCWgPQwgLQQ5KmNVvQJSGlFKUaBVL0GgWR0CaXHXeFcptdX2UKGgGaAloD0MI9ihcj0KPcECUhpRSlGgVS91oFkdAml3cBQvYe3V9lChoBmgJaA9DCBXGFoIc6V5AlIaUUpRoFU3oA2gWR0CaXhXYlIEsdX2UKGgGaAloD0MIzO80mXGucUCUhpRSlGgVTQIBaBZHQJpeycurZJ11fZQoaAZoCWgPQwjOwwlMJ/twQJSGlFKUaBVL4WgWR0CaXzywfQrudX2UKGgGaAloD0MIhel7DUGEY0CUhpRSlGgVTegDaBZHQJpfPfTCtRx1fZQoaAZoCWgPQwh5eTpXFA1yQJSGlFKUaBVL8mgWR0CaX3CXQdCFdX2UKGgGaAloD0MIOpShKiZzcECUhpRSlGgVS+ZoFkdAmmAOIEbHZXV9lChoBmgJaA9DCE7QJoePLXJAlIaUUpRoFUvOaBZHQJpgR+XqqwR1fZQoaAZoCWgPQwgB3CxebH5wQJSGlFKUaBVL4mgWR0CaYONmUW2xdX2UKGgGaAloD0MIFNBE2LBAckCUhpRSlGgVS+loFkdAmmEF3MY/FHV9lChoBmgJaA9DCLVrQlpjom9AlIaUUpRoFUv8aBZHQJphCgSOBDp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
         
     | 
    	
        replay.mp4
    ADDED
    
    | 
         Binary file (239 kB). View file 
     | 
| 
         | 
    	
        results.json
    ADDED
    
    | 
         @@ -0,0 +1 @@ 
     | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {"mean_reward": 250.51247328056107, "std_reward": 35.05072767100219, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-18T14:34:21.775630"}
         
     |