newbie4000 commited on
Commit
ad8c152
·
1 Parent(s): 6161c8b

Upload PPO LunarLander agent

Browse files
LunarLander-trained.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d313e02f8ce4b8f2350d45497a7bf8f23fdec342bc31dc5c032a091ca9d6409
3
+ size 147129
LunarLander-trained/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
LunarLander-trained/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5e7ac34d30>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5e7ac34dc0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5e7ac34e50>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5e7ac34ee0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f5e7ac34f70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f5e7ac39040>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5e7ac390d0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f5e7ac39160>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5e7ac391f0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5e7ac39280>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5e7ac39310>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f5e7ac30a20>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671372243622874923,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJr5s7tpyBw99rMFvU3AHL7+oxW96CVZPQAAAAAAAAAA+rFEvptIpj44eHs+KpaXviXZbzyMX7U9AAAAAAAAAABmVac8RJG2P4ebLT/+6k4+W0eVvDLPrb0AAAAAAAAAADPfEz4ty7c/4PP0PnHnq762PC0+U6suPgAAAAAAAAAApsAFvoUPhLsOl0C8nE6Kul2BxjxAJG07AACAPwAAgD+NFuw9YlimPi4Ezb1k+LW+CD6jO/MirLsAAAAAAAAAAOZMO74QuoU/ZiHlvgpADb+AmDW+8e+1vQAAAAAAAAAAZlupvBS+l7o2cCm1gLHCr4Uy9rr411w0AACAPwAAgD9AD7g9nUoqP0ywhD1hDee+/sOLPflNErwAAAAAAAAAAOZlDj03mag/BbTuPiK1LL90XR650sP5PQAAAAAAAAAAc1saPkPMAD0dXI29I9slvhrx9zuwwHI9AAAAAAAAAABCk6S+q6pHPzIRQb4jitq+C8WHvpu43j0AAAAAAAAAALq3QT7UAsO83iMMO6mpMrns7yq+uyJqugAAgD8AAIA/ZmpDPIN1tz+GRxk/r7j3PrduSLw269i9AAAAAAAAAACmeY+9LdUnP/7yFb1y6/K+bqZ5vR+2NbwAAAAAAAAAAFpnUD4+Bxk/pHE+PEArsb5A6Ag+Nb7BvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVPhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9S9JZcpPcECUhpRSlIwBbJRLzowBdJRHQJodP5k9U0h1fZQoaAZoCWgPQwgtCOV9HHtzQJSGlFKUaBVNHwFoFkdAmh3ixFAmiXV9lChoBmgJaA9DCOXyH9KveHJAlIaUUpRoFUvOaBZHQJoeuOBDohZ1fZQoaAZoCWgPQwiSWFLuvs9lQJSGlFKUaBVN6ANoFkdAmh66d1+y7nV9lChoBmgJaA9DCBNgWP78qW9AlIaUUpRoFUvSaBZHQJoe81O0svt1fZQoaAZoCWgPQwjzA1d5gqhxQJSGlFKUaBVLt2gWR0CaH6jz7MxHdX2UKGgGaAloD0MIyv55GrACckCUhpRSlGgVTRIBaBZHQJoh7s7dSEV1fZQoaAZoCWgPQwiV9DC0eppwQJSGlFKUaBVL+WgWR0CaI1cAR02cdX2UKGgGaAloD0MIvVKWIY7UcECUhpRSlGgVS79oFkdAmiN5s41gpnV9lChoBmgJaA9DCNFbPLynonBAlIaUUpRoFU0SAWgWR0CaI5aA4GUwdX2UKGgGaAloD0MIV7H4TaH7cUCUhpRSlGgVS/xoFkdAmiQUkv9LpXV9lChoBmgJaA9DCM41zNA4YnJAlIaUUpRoFUvPaBZHQJoll0+1Sfl1fZQoaAZoCWgPQwjFVzuKM/NyQJSGlFKUaBVNLwFoFkdAmiWU0BOpKnV9lChoBmgJaA9DCDaVRWGXOW1AlIaUUpRoFUvPaBZHQJol2E+Pikx1fZQoaAZoCWgPQwgOTkS/dudwQJSGlFKUaBVL+mgWR0CaJiVpKzzFdX2UKGgGaAloD0MII0kQrkCvcECUhpRSlGgVS/RoFkdAmifdRJmNBHV9lChoBmgJaA9DCArcuptnZXFAlIaUUpRoFUvXaBZHQJopUyCWeH11fZQoaAZoCWgPQwj3zf3V481uQJSGlFKUaBVL0mgWR0CaK280k4WDdX2UKGgGaAloD0MI2zUhrTFXYECUhpRSlGgVTegDaBZHQJorjpHI6sB1fZQoaAZoCWgPQwjEI/Hy9NxuQJSGlFKUaBVLyGgWR0CaLJDVpbljdX2UKGgGaAloD0MIEsE4uLRhckCUhpRSlGgVTRcBaBZHQJotIo7V8Tl1fZQoaAZoCWgPQwhXem02lmhyQJSGlFKUaBVL1GgWR0CaLVYcebNKdX2UKGgGaAloD0MISzlf7D2YcUCUhpRSlGgVTRkBaBZHQJotVm/WUbF1fZQoaAZoCWgPQwgdy7vqgRpwQJSGlFKUaBVL82gWR0CaLiDej2zwdX2UKGgGaAloD0MInkSEf5EJYECUhpRSlGgVTegDaBZHQJouiSNfgJl1fZQoaAZoCWgPQwiIY13cRptwQJSGlFKUaBVL5WgWR0CaL9wrlNlAdX2UKGgGaAloD0MIF/Ayw8ZdcUCUhpRSlGgVS/JoFkdAmjHEDEFW4nV9lChoBmgJaA9DCFoqb0c4Dm5AlIaUUpRoFUvcaBZHQJozA2qDK5l1fZQoaAZoCWgPQwgqc/ONqCVzQJSGlFKUaBVL32gWR0CaM0FGoaUBdX2UKGgGaAloD0MItVAyOXVbcECUhpRSlGgVS9poFkdAmjT5r+Hae3V9lChoBmgJaA9DCJV/La9cYWRAlIaUUpRoFU3oA2gWR0CaNR89Oh0ydX2UKGgGaAloD0MIy/W2mYr9bkCUhpRSlGgVS+JoFkdAmjVPA0sOG3V9lChoBmgJaA9DCCdok8PnS3FAlIaUUpRoFUvwaBZHQJo1mmhufmN1fZQoaAZoCWgPQwgHeqhtwzNyQJSGlFKUaBVL12gWR0CaN9q5sj3VdX2UKGgGaAloD0MIPpP983SxcECUhpRSlGgVTTwBaBZHQJo5ydSVGCt1fZQoaAZoCWgPQwhMwRpn08hlQJSGlFKUaBVN6ANoFkdAmjqvMr3CbnV9lChoBmgJaA9DCF5m2CiryHFAlIaUUpRoFUvIaBZHQJo64fHPu5V1fZQoaAZoCWgPQwiSrS6nROtwQJSGlFKUaBVL0mgWR0CaO38e0XxfdX2UKGgGaAloD0MIBOj3/RuXZUCUhpRSlGgVTegDaBZHQJo706BAfMh1fZQoaAZoCWgPQwgCvAUSFEhwQJSGlFKUaBVLy2gWR0CaPVgrpaA4dX2UKGgGaAloD0MI16IFaNvDcUCUhpRSlGgVS8ZoFkdAmj1+j/MnqnV9lChoBmgJaA9DCJF7urpjkG1AlIaUUpRoFUvaaBZHQJo9vOMVDa51fZQoaAZoCWgPQwglQE0tW3dwQJSGlFKUaBVL3mgWR0CaPcdKdxyXdX2UKGgGaAloD0MIIuF7f0MUcECUhpRSlGgVTVsBaBZHQJo/JrXUYsN1fZQoaAZoCWgPQwjrkJvhBjRzQJSGlFKUaBVL5WgWR0CaQI7eVLSNdX2UKGgGaAloD0MIB5j5Dn5maECUhpRSlGgVTegDaBZHQJpCZRO1v2p1fZQoaAZoCWgPQwj4+e/BK1lyQJSGlFKUaBVL4GgWR0CaQxKBNEgGdX2UKGgGaAloD0MIg4dp39wVckCUhpRSlGgVTQQBaBZHQJpDYJjUd7x1fZQoaAZoCWgPQwiN7iB25qVxQJSGlFKUaBVL9mgWR0CaQ7MzMzMzdX2UKGgGaAloD0MIMBAEyBDdcECUhpRSlGgVS/RoFkdAmkRiuyNXHXV9lChoBmgJaA9DCBBAahMnLnBAlIaUUpRoFU1PAmgWR0CaRGBeXzDodX2UKGgGaAloD0MIVp3VAvurcECUhpRSlGgVTQYBaBZHQJpG6ejEehh1fZQoaAZoCWgPQwi4rS08bzhwQJSGlFKUaBVL2GgWR0CaRvz8P4EfdX2UKGgGaAloD0MIaTf6mA9LXkCUhpRSlGgVTegDaBZHQJpIAMXrMTx1fZQoaAZoCWgPQwi5pkBmp3VxQJSGlFKUaBVNHQFoFkdAmkgUi+tbLXV9lChoBmgJaA9DCFvSUQ4mwHFAlIaUUpRoFU0hAWgWR0CaSEKO1fE5dX2UKGgGaAloD0MIOpM2VXcnb0CUhpRSlGgVS+xoFkdAmklSZfD1oXV9lChoBmgJaA9DCJvmHadoKG5AlIaUUpRoFUvQaBZHQJpKKlLvkR11fZQoaAZoCWgPQwiG4/kMKOxkQJSGlFKUaBVN6ANoFkdAmkq6TSsr/nV9lChoBmgJaA9DCIy7QbRWbG5AlIaUUpRoFUvXaBZHQJpLBaA4GUx1fZQoaAZoCWgPQwgEWU+tfgdxQJSGlFKUaBVL0WgWR0CaS2Xm/336dX2UKGgGaAloD0MICLDIr1/PcECUhpRSlGgVS+doFkdAmky4mb9ZR3V9lChoBmgJaA9DCOVjd4GSxGxAlIaUUpRoFUvSaBZHQJpOUysS00F1fZQoaAZoCWgPQwgY0At3rrhwQJSGlFKUaBVLuGgWR0CaTmJ0GNaRdX2UKGgGaAloD0MIWpwxzEm2cECUhpRSlGgVTR8BaBZHQJpOqYlY2bZ1fZQoaAZoCWgPQwjCobd4OJNyQJSGlFKUaBVNSAFoFkdAmk8dhE0BO3V9lChoBmgJaA9DCBFV+DO8R3FAlIaUUpRoFUv7aBZHQJpPxpcophF1fZQoaAZoCWgPQwhKfsSvmKhwQJSGlFKUaBVLv2gWR0CaUJoTwlSkdX2UKGgGaAloD0MIisdFtQhIb0CUhpRSlGgVS/poFkdAmlDaoybhFXV9lChoBmgJaA9DCNnts8pMlmJAlIaUUpRoFU3oA2gWR0CaUORcu8K5dX2UKGgGaAloD0MI7nvUX+/5cUCUhpRSlGgVTQQBaBZHQJpRAWN3np11fZQoaAZoCWgPQwhgHccPVfpwQJSGlFKUaBVL2GgWR0CaUdQcPvrodX2UKGgGaAloD0MI8BZIUPyObkCUhpRSlGgVS+ZoFkdAmlKDZlFtsXV9lChoBmgJaA9DCBrAWyBB7m9AlIaUUpRoFUvvaBZHQJpTF0/4Zdh1fZQoaAZoCWgPQwj7IMuCCVpyQJSGlFKUaBVNCQFoFkdAmlUphrnDBXV9lChoBmgJaA9DCPWCT3OyEXBAlIaUUpRoFUvfaBZHQJpVq/Zdv891fZQoaAZoCWgPQwjsZ7EUSedwQJSGlFKUaBVL8GgWR0CaVe6Skj5cdX2UKGgGaAloD0MI4pANpIvhcECUhpRSlGgVS/toFkdAmlZVBlcyFnV9lChoBmgJaA9DCIfD0sCP5XBAlIaUUpRoFUvuaBZHQJpWml67dzp1fZQoaAZoCWgPQwjTFtf4zEtvQJSGlFKUaBVL1mgWR0CaV36wt8NQdX2UKGgGaAloD0MIem6hKxHgb0CUhpRSlGgVS+FoFkdAmlfVkpZwGXV9lChoBmgJaA9DCKfOo+I/RHFAlIaUUpRoFU0aAWgWR0CaWKZl4C6pdX2UKGgGaAloD0MIo+nsZPDZcUCUhpRSlGgVTQIBaBZHQJpZIeJYT0x1fZQoaAZoCWgPQwjZQSWuY7JwQJSGlFKUaBVNIAFoFkdAmlnVJ+UhV3V9lChoBmgJaA9DCExvfy5awXBAlIaUUpRoFUv4aBZHQJpZ3kp7TlV1fZQoaAZoCWgPQwgxDFhyFattQJSGlFKUaBVL42gWR0CaWer/bTMJdX2UKGgGaAloD0MIDK8kee78cUCUhpRSlGgVS/JoFkdAmlr2FajesXV9lChoBmgJaA9DCAQAx569EXFAlIaUUpRoFUvEaBZHQJpcUXGff411fZQoaAZoCWgPQwgLQQ5KmNVvQJSGlFKUaBVL0GgWR0CaXHXeFcptdX2UKGgGaAloD0MI9ihcj0KPcECUhpRSlGgVS91oFkdAml3cBQvYe3V9lChoBmgJaA9DCBXGFoIc6V5AlIaUUpRoFU3oA2gWR0CaXhXYlIEsdX2UKGgGaAloD0MIzO80mXGucUCUhpRSlGgVTQIBaBZHQJpeycurZJ11fZQoaAZoCWgPQwjOwwlMJ/twQJSGlFKUaBVL4WgWR0CaXzywfQrudX2UKGgGaAloD0MIhel7DUGEY0CUhpRSlGgVTegDaBZHQJpfPfTCtRx1fZQoaAZoCWgPQwh5eTpXFA1yQJSGlFKUaBVL8mgWR0CaX3CXQdCFdX2UKGgGaAloD0MIOpShKiZzcECUhpRSlGgVS+ZoFkdAmmAOIEbHZXV9lChoBmgJaA9DCE7QJoePLXJAlIaUUpRoFUvOaBZHQJpgR+XqqwR1fZQoaAZoCWgPQwgB3CxebH5wQJSGlFKUaBVL4mgWR0CaYONmUW2xdX2UKGgGaAloD0MIFNBE2LBAckCUhpRSlGgVS+loFkdAmmEF3MY/FHV9lChoBmgJaA9DCLVrQlpjom9AlIaUUpRoFUv8aBZHQJphCgSOBDp1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 310,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
LunarLander-trained/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d257ae20cf6c5e2e66b2a1b17c2f2fac12d971b404c839870a829e68be6a4127
3
+ size 87929
LunarLander-trained/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba92bb28e6c1e541fc8686583bebf104c0e1e9ab3c69e3391f19a2f2f50bb43d
3
+ size 43201
LunarLander-trained/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
LunarLander-trained/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 250.51 +/- 35.05
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5e7ac34d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5e7ac34dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5e7ac34e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5e7ac34ee0>", "_build": "<function ActorCriticPolicy._build at 0x7f5e7ac34f70>", "forward": "<function ActorCriticPolicy.forward at 0x7f5e7ac39040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5e7ac390d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5e7ac39160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5e7ac391f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5e7ac39280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5e7ac39310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5e7ac30a20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671372243622874923, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJr5s7tpyBw99rMFvU3AHL7+oxW96CVZPQAAAAAAAAAA+rFEvptIpj44eHs+KpaXviXZbzyMX7U9AAAAAAAAAABmVac8RJG2P4ebLT/+6k4+W0eVvDLPrb0AAAAAAAAAADPfEz4ty7c/4PP0PnHnq762PC0+U6suPgAAAAAAAAAApsAFvoUPhLsOl0C8nE6Kul2BxjxAJG07AACAPwAAgD+NFuw9YlimPi4Ezb1k+LW+CD6jO/MirLsAAAAAAAAAAOZMO74QuoU/ZiHlvgpADb+AmDW+8e+1vQAAAAAAAAAAZlupvBS+l7o2cCm1gLHCr4Uy9rr411w0AACAPwAAgD9AD7g9nUoqP0ywhD1hDee+/sOLPflNErwAAAAAAAAAAOZlDj03mag/BbTuPiK1LL90XR650sP5PQAAAAAAAAAAc1saPkPMAD0dXI29I9slvhrx9zuwwHI9AAAAAAAAAABCk6S+q6pHPzIRQb4jitq+C8WHvpu43j0AAAAAAAAAALq3QT7UAsO83iMMO6mpMrns7yq+uyJqugAAgD8AAIA/ZmpDPIN1tz+GRxk/r7j3PrduSLw269i9AAAAAAAAAACmeY+9LdUnP/7yFb1y6/K+bqZ5vR+2NbwAAAAAAAAAAFpnUD4+Bxk/pHE+PEArsb5A6Ag+Nb7BvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9S9JZcpPcECUhpRSlIwBbJRLzowBdJRHQJodP5k9U0h1fZQoaAZoCWgPQwgtCOV9HHtzQJSGlFKUaBVNHwFoFkdAmh3ixFAmiXV9lChoBmgJaA9DCOXyH9KveHJAlIaUUpRoFUvOaBZHQJoeuOBDohZ1fZQoaAZoCWgPQwiSWFLuvs9lQJSGlFKUaBVN6ANoFkdAmh66d1+y7nV9lChoBmgJaA9DCBNgWP78qW9AlIaUUpRoFUvSaBZHQJoe81O0svt1fZQoaAZoCWgPQwjzA1d5gqhxQJSGlFKUaBVLt2gWR0CaH6jz7MxHdX2UKGgGaAloD0MIyv55GrACckCUhpRSlGgVTRIBaBZHQJoh7s7dSEV1fZQoaAZoCWgPQwiV9DC0eppwQJSGlFKUaBVL+WgWR0CaI1cAR02cdX2UKGgGaAloD0MIvVKWIY7UcECUhpRSlGgVS79oFkdAmiN5s41gpnV9lChoBmgJaA9DCNFbPLynonBAlIaUUpRoFU0SAWgWR0CaI5aA4GUwdX2UKGgGaAloD0MIV7H4TaH7cUCUhpRSlGgVS/xoFkdAmiQUkv9LpXV9lChoBmgJaA9DCM41zNA4YnJAlIaUUpRoFUvPaBZHQJoll0+1Sfl1fZQoaAZoCWgPQwjFVzuKM/NyQJSGlFKUaBVNLwFoFkdAmiWU0BOpKnV9lChoBmgJaA9DCDaVRWGXOW1AlIaUUpRoFUvPaBZHQJol2E+Pikx1fZQoaAZoCWgPQwgOTkS/dudwQJSGlFKUaBVL+mgWR0CaJiVpKzzFdX2UKGgGaAloD0MII0kQrkCvcECUhpRSlGgVS/RoFkdAmifdRJmNBHV9lChoBmgJaA9DCArcuptnZXFAlIaUUpRoFUvXaBZHQJopUyCWeH11fZQoaAZoCWgPQwj3zf3V481uQJSGlFKUaBVL0mgWR0CaK280k4WDdX2UKGgGaAloD0MI2zUhrTFXYECUhpRSlGgVTegDaBZHQJorjpHI6sB1fZQoaAZoCWgPQwjEI/Hy9NxuQJSGlFKUaBVLyGgWR0CaLJDVpbljdX2UKGgGaAloD0MIEsE4uLRhckCUhpRSlGgVTRcBaBZHQJotIo7V8Tl1fZQoaAZoCWgPQwhXem02lmhyQJSGlFKUaBVL1GgWR0CaLVYcebNKdX2UKGgGaAloD0MISzlf7D2YcUCUhpRSlGgVTRkBaBZHQJotVm/WUbF1fZQoaAZoCWgPQwgdy7vqgRpwQJSGlFKUaBVL82gWR0CaLiDej2zwdX2UKGgGaAloD0MInkSEf5EJYECUhpRSlGgVTegDaBZHQJouiSNfgJl1fZQoaAZoCWgPQwiIY13cRptwQJSGlFKUaBVL5WgWR0CaL9wrlNlAdX2UKGgGaAloD0MIF/Ayw8ZdcUCUhpRSlGgVS/JoFkdAmjHEDEFW4nV9lChoBmgJaA9DCFoqb0c4Dm5AlIaUUpRoFUvcaBZHQJozA2qDK5l1fZQoaAZoCWgPQwgqc/ONqCVzQJSGlFKUaBVL32gWR0CaM0FGoaUBdX2UKGgGaAloD0MItVAyOXVbcECUhpRSlGgVS9poFkdAmjT5r+Hae3V9lChoBmgJaA9DCJV/La9cYWRAlIaUUpRoFU3oA2gWR0CaNR89Oh0ydX2UKGgGaAloD0MIy/W2mYr9bkCUhpRSlGgVS+JoFkdAmjVPA0sOG3V9lChoBmgJaA9DCCdok8PnS3FAlIaUUpRoFUvwaBZHQJo1mmhufmN1fZQoaAZoCWgPQwgHeqhtwzNyQJSGlFKUaBVL12gWR0CaN9q5sj3VdX2UKGgGaAloD0MIPpP983SxcECUhpRSlGgVTTwBaBZHQJo5ydSVGCt1fZQoaAZoCWgPQwhMwRpn08hlQJSGlFKUaBVN6ANoFkdAmjqvMr3CbnV9lChoBmgJaA9DCF5m2CiryHFAlIaUUpRoFUvIaBZHQJo64fHPu5V1fZQoaAZoCWgPQwiSrS6nROtwQJSGlFKUaBVL0mgWR0CaO38e0XxfdX2UKGgGaAloD0MIBOj3/RuXZUCUhpRSlGgVTegDaBZHQJo706BAfMh1fZQoaAZoCWgPQwgCvAUSFEhwQJSGlFKUaBVLy2gWR0CaPVgrpaA4dX2UKGgGaAloD0MI16IFaNvDcUCUhpRSlGgVS8ZoFkdAmj1+j/MnqnV9lChoBmgJaA9DCJF7urpjkG1AlIaUUpRoFUvaaBZHQJo9vOMVDa51fZQoaAZoCWgPQwglQE0tW3dwQJSGlFKUaBVL3mgWR0CaPcdKdxyXdX2UKGgGaAloD0MIIuF7f0MUcECUhpRSlGgVTVsBaBZHQJo/JrXUYsN1fZQoaAZoCWgPQwjrkJvhBjRzQJSGlFKUaBVL5WgWR0CaQI7eVLSNdX2UKGgGaAloD0MIB5j5Dn5maECUhpRSlGgVTegDaBZHQJpCZRO1v2p1fZQoaAZoCWgPQwj4+e/BK1lyQJSGlFKUaBVL4GgWR0CaQxKBNEgGdX2UKGgGaAloD0MIg4dp39wVckCUhpRSlGgVTQQBaBZHQJpDYJjUd7x1fZQoaAZoCWgPQwiN7iB25qVxQJSGlFKUaBVL9mgWR0CaQ7MzMzMzdX2UKGgGaAloD0MIMBAEyBDdcECUhpRSlGgVS/RoFkdAmkRiuyNXHXV9lChoBmgJaA9DCBBAahMnLnBAlIaUUpRoFU1PAmgWR0CaRGBeXzDodX2UKGgGaAloD0MIVp3VAvurcECUhpRSlGgVTQYBaBZHQJpG6ejEehh1fZQoaAZoCWgPQwi4rS08bzhwQJSGlFKUaBVL2GgWR0CaRvz8P4EfdX2UKGgGaAloD0MIaTf6mA9LXkCUhpRSlGgVTegDaBZHQJpIAMXrMTx1fZQoaAZoCWgPQwi5pkBmp3VxQJSGlFKUaBVNHQFoFkdAmkgUi+tbLXV9lChoBmgJaA9DCFvSUQ4mwHFAlIaUUpRoFU0hAWgWR0CaSEKO1fE5dX2UKGgGaAloD0MIOpM2VXcnb0CUhpRSlGgVS+xoFkdAmklSZfD1oXV9lChoBmgJaA9DCJvmHadoKG5AlIaUUpRoFUvQaBZHQJpKKlLvkR11fZQoaAZoCWgPQwiG4/kMKOxkQJSGlFKUaBVN6ANoFkdAmkq6TSsr/nV9lChoBmgJaA9DCIy7QbRWbG5AlIaUUpRoFUvXaBZHQJpLBaA4GUx1fZQoaAZoCWgPQwgEWU+tfgdxQJSGlFKUaBVL0WgWR0CaS2Xm/336dX2UKGgGaAloD0MICLDIr1/PcECUhpRSlGgVS+doFkdAmky4mb9ZR3V9lChoBmgJaA9DCOVjd4GSxGxAlIaUUpRoFUvSaBZHQJpOUysS00F1fZQoaAZoCWgPQwgY0At3rrhwQJSGlFKUaBVLuGgWR0CaTmJ0GNaRdX2UKGgGaAloD0MIWpwxzEm2cECUhpRSlGgVTR8BaBZHQJpOqYlY2bZ1fZQoaAZoCWgPQwjCobd4OJNyQJSGlFKUaBVNSAFoFkdAmk8dhE0BO3V9lChoBmgJaA9DCBFV+DO8R3FAlIaUUpRoFUv7aBZHQJpPxpcophF1fZQoaAZoCWgPQwhKfsSvmKhwQJSGlFKUaBVLv2gWR0CaUJoTwlSkdX2UKGgGaAloD0MIisdFtQhIb0CUhpRSlGgVS/poFkdAmlDaoybhFXV9lChoBmgJaA9DCNnts8pMlmJAlIaUUpRoFU3oA2gWR0CaUORcu8K5dX2UKGgGaAloD0MI7nvUX+/5cUCUhpRSlGgVTQQBaBZHQJpRAWN3np11fZQoaAZoCWgPQwhgHccPVfpwQJSGlFKUaBVL2GgWR0CaUdQcPvrodX2UKGgGaAloD0MI8BZIUPyObkCUhpRSlGgVS+ZoFkdAmlKDZlFtsXV9lChoBmgJaA9DCBrAWyBB7m9AlIaUUpRoFUvvaBZHQJpTF0/4Zdh1fZQoaAZoCWgPQwj7IMuCCVpyQJSGlFKUaBVNCQFoFkdAmlUphrnDBXV9lChoBmgJaA9DCPWCT3OyEXBAlIaUUpRoFUvfaBZHQJpVq/Zdv891fZQoaAZoCWgPQwjsZ7EUSedwQJSGlFKUaBVL8GgWR0CaVe6Skj5cdX2UKGgGaAloD0MI4pANpIvhcECUhpRSlGgVS/toFkdAmlZVBlcyFnV9lChoBmgJaA9DCIfD0sCP5XBAlIaUUpRoFUvuaBZHQJpWml67dzp1fZQoaAZoCWgPQwjTFtf4zEtvQJSGlFKUaBVL1mgWR0CaV36wt8NQdX2UKGgGaAloD0MIem6hKxHgb0CUhpRSlGgVS+FoFkdAmlfVkpZwGXV9lChoBmgJaA9DCKfOo+I/RHFAlIaUUpRoFU0aAWgWR0CaWKZl4C6pdX2UKGgGaAloD0MIo+nsZPDZcUCUhpRSlGgVTQIBaBZHQJpZIeJYT0x1fZQoaAZoCWgPQwjZQSWuY7JwQJSGlFKUaBVNIAFoFkdAmlnVJ+UhV3V9lChoBmgJaA9DCExvfy5awXBAlIaUUpRoFUv4aBZHQJpZ3kp7TlV1fZQoaAZoCWgPQwgxDFhyFattQJSGlFKUaBVL42gWR0CaWer/bTMJdX2UKGgGaAloD0MIDK8kee78cUCUhpRSlGgVS/JoFkdAmlr2FajesXV9lChoBmgJaA9DCAQAx569EXFAlIaUUpRoFUvEaBZHQJpcUXGff411fZQoaAZoCWgPQwgLQQ5KmNVvQJSGlFKUaBVL0GgWR0CaXHXeFcptdX2UKGgGaAloD0MI9ihcj0KPcECUhpRSlGgVS91oFkdAml3cBQvYe3V9lChoBmgJaA9DCBXGFoIc6V5AlIaUUpRoFU3oA2gWR0CaXhXYlIEsdX2UKGgGaAloD0MIzO80mXGucUCUhpRSlGgVTQIBaBZHQJpeycurZJ11fZQoaAZoCWgPQwjOwwlMJ/twQJSGlFKUaBVL4WgWR0CaXzywfQrudX2UKGgGaAloD0MIhel7DUGEY0CUhpRSlGgVTegDaBZHQJpfPfTCtRx1fZQoaAZoCWgPQwh5eTpXFA1yQJSGlFKUaBVL8mgWR0CaX3CXQdCFdX2UKGgGaAloD0MIOpShKiZzcECUhpRSlGgVS+ZoFkdAmmAOIEbHZXV9lChoBmgJaA9DCE7QJoePLXJAlIaUUpRoFUvOaBZHQJpgR+XqqwR1fZQoaAZoCWgPQwgB3CxebH5wQJSGlFKUaBVL4mgWR0CaYONmUW2xdX2UKGgGaAloD0MIFNBE2LBAckCUhpRSlGgVS+loFkdAmmEF3MY/FHV9lChoBmgJaA9DCLVrQlpjom9AlIaUUpRoFUv8aBZHQJphCgSOBDp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (239 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 250.51247328056107, "std_reward": 35.05072767100219, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-18T14:34:21.775630"}