newbie-geek
commited on
Commit
•
38121cb
1
Parent(s):
e33f40e
End of training
Browse files
README.md
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
|
7 |
+
model-index:
|
8 |
+
- name: tinyllama-v1-finetune
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# tinyllama-v1-finetune
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.5205
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 2.5e-05
|
39 |
+
- train_batch_size: 2
|
40 |
+
- eval_batch_size: 8
|
41 |
+
- seed: 42
|
42 |
+
- gradient_accumulation_steps: 4
|
43 |
+
- total_train_batch_size: 8
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- training_steps: 400
|
47 |
+
- mixed_precision_training: Native AMP
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
53 |
+
| 2.7664 | 0.04 | 5 | 2.7807 |
|
54 |
+
| 2.7326 | 0.08 | 10 | 2.7249 |
|
55 |
+
| 2.6955 | 0.12 | 15 | 2.6739 |
|
56 |
+
| 2.643 | 0.16 | 20 | 2.6085 |
|
57 |
+
| 2.6056 | 0.2 | 25 | 2.5554 |
|
58 |
+
| 2.5018 | 0.24 | 30 | 2.4923 |
|
59 |
+
| 2.4587 | 0.28 | 35 | 2.4204 |
|
60 |
+
| 2.3997 | 0.32 | 40 | 2.3484 |
|
61 |
+
| 2.3142 | 0.36 | 45 | 2.2673 |
|
62 |
+
| 2.2507 | 0.4 | 50 | 2.1903 |
|
63 |
+
| 2.1405 | 0.43 | 55 | 2.1071 |
|
64 |
+
| 2.0471 | 0.47 | 60 | 2.0212 |
|
65 |
+
| 1.9957 | 0.51 | 65 | 1.9385 |
|
66 |
+
| 1.9007 | 0.55 | 70 | 1.8448 |
|
67 |
+
| 1.8046 | 0.59 | 75 | 1.7501 |
|
68 |
+
| 1.691 | 0.63 | 80 | 1.6495 |
|
69 |
+
| 1.5957 | 0.67 | 85 | 1.5484 |
|
70 |
+
| 1.53 | 0.71 | 90 | 1.4608 |
|
71 |
+
| 1.4161 | 0.75 | 95 | 1.3669 |
|
72 |
+
| 1.3409 | 0.79 | 100 | 1.2772 |
|
73 |
+
| 1.239 | 0.83 | 105 | 1.1833 |
|
74 |
+
| 1.1591 | 0.87 | 110 | 1.1122 |
|
75 |
+
| 1.0729 | 0.91 | 115 | 1.0276 |
|
76 |
+
| 1.0237 | 0.95 | 120 | 0.9615 |
|
77 |
+
| 0.9293 | 0.99 | 125 | 0.9021 |
|
78 |
+
| 0.891 | 1.03 | 130 | 0.8531 |
|
79 |
+
| 0.8365 | 1.07 | 135 | 0.8155 |
|
80 |
+
| 0.7876 | 1.11 | 140 | 0.7898 |
|
81 |
+
| 0.7821 | 1.15 | 145 | 0.7669 |
|
82 |
+
| 0.7392 | 1.19 | 150 | 0.7516 |
|
83 |
+
| 0.77 | 1.23 | 155 | 0.7397 |
|
84 |
+
| 0.7088 | 1.26 | 160 | 0.7226 |
|
85 |
+
| 0.7246 | 1.3 | 165 | 0.7101 |
|
86 |
+
| 0.7007 | 1.34 | 170 | 0.6960 |
|
87 |
+
| 0.6667 | 1.38 | 175 | 0.6797 |
|
88 |
+
| 0.6898 | 1.42 | 180 | 0.6666 |
|
89 |
+
| 0.6608 | 1.46 | 185 | 0.6599 |
|
90 |
+
| 0.6526 | 1.5 | 190 | 0.6451 |
|
91 |
+
| 0.6078 | 1.54 | 195 | 0.6350 |
|
92 |
+
| 0.6336 | 1.58 | 200 | 0.6248 |
|
93 |
+
| 0.6074 | 1.62 | 205 | 0.6167 |
|
94 |
+
| 0.6114 | 1.66 | 210 | 0.6131 |
|
95 |
+
| 0.575 | 1.7 | 215 | 0.6041 |
|
96 |
+
| 0.5933 | 1.74 | 220 | 0.5981 |
|
97 |
+
| 0.5983 | 1.78 | 225 | 0.5910 |
|
98 |
+
| 0.5907 | 1.82 | 230 | 0.5845 |
|
99 |
+
| 0.5853 | 1.86 | 235 | 0.5801 |
|
100 |
+
| 0.5881 | 1.9 | 240 | 0.5749 |
|
101 |
+
| 0.5613 | 1.94 | 245 | 0.5700 |
|
102 |
+
| 0.5852 | 1.98 | 250 | 0.5696 |
|
103 |
+
| 0.5781 | 2.02 | 255 | 0.5652 |
|
104 |
+
| 0.5812 | 2.06 | 260 | 0.5609 |
|
105 |
+
| 0.5677 | 2.09 | 265 | 0.5576 |
|
106 |
+
| 0.5544 | 2.13 | 270 | 0.5541 |
|
107 |
+
| 0.536 | 2.17 | 275 | 0.5504 |
|
108 |
+
| 0.5283 | 2.21 | 280 | 0.5487 |
|
109 |
+
| 0.5326 | 2.25 | 285 | 0.5454 |
|
110 |
+
| 0.568 | 2.29 | 290 | 0.5402 |
|
111 |
+
| 0.5448 | 2.33 | 295 | 0.5395 |
|
112 |
+
| 0.5581 | 2.37 | 300 | 0.5377 |
|
113 |
+
| 0.5406 | 2.41 | 305 | 0.5355 |
|
114 |
+
| 0.4996 | 2.45 | 310 | 0.5333 |
|
115 |
+
| 0.5243 | 2.49 | 315 | 0.5346 |
|
116 |
+
| 0.5591 | 2.53 | 320 | 0.5312 |
|
117 |
+
| 0.5122 | 2.57 | 325 | 0.5297 |
|
118 |
+
| 0.5426 | 2.61 | 330 | 0.5290 |
|
119 |
+
| 0.4955 | 2.65 | 335 | 0.5290 |
|
120 |
+
| 0.5531 | 2.69 | 340 | 0.5273 |
|
121 |
+
| 0.5147 | 2.73 | 345 | 0.5278 |
|
122 |
+
| 0.5195 | 2.77 | 350 | 0.5246 |
|
123 |
+
| 0.5268 | 2.81 | 355 | 0.5254 |
|
124 |
+
| 0.5284 | 2.85 | 360 | 0.5236 |
|
125 |
+
| 0.5272 | 2.89 | 365 | 0.5224 |
|
126 |
+
| 0.5053 | 2.92 | 370 | 0.5240 |
|
127 |
+
| 0.528 | 2.96 | 375 | 0.5200 |
|
128 |
+
| 0.517 | 3.0 | 380 | 0.5204 |
|
129 |
+
| 0.5409 | 3.04 | 385 | 0.5206 |
|
130 |
+
| 0.5204 | 3.08 | 390 | 0.5192 |
|
131 |
+
| 0.52 | 3.12 | 395 | 0.5200 |
|
132 |
+
| 0.5142 | 3.16 | 400 | 0.5205 |
|
133 |
+
|
134 |
+
|
135 |
+
### Framework versions
|
136 |
+
|
137 |
+
- PEFT 0.8.1
|
138 |
+
- Transformers 4.37.2
|
139 |
+
- Pytorch 2.1.0+cu121
|
140 |
+
- Datasets 2.16.1
|
141 |
+
- Tokenizers 0.15.1
|