|
|
|
|
|
|
|
|
|
|
|
"""Generation support.""" |
|
|
|
from typing import Tuple, List, Union, Iterable |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from transformers import PreTrainedTokenizer |
|
from transformers import logging |
|
from transformers.generation import LogitsProcessor |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
HistoryType = List[Tuple[str, str]] |
|
TokensType = List[int] |
|
BatchTokensType = List[List[int]] |
|
|
|
|
|
def pad_batch(batch: BatchTokensType, pad_id: int, seq_length: int) -> BatchTokensType: |
|
for tokens in batch: |
|
context_length = len(tokens) |
|
if context_length < seq_length: |
|
tokens.extend([pad_id] * (seq_length - context_length)) |
|
return batch |
|
|
|
|
|
def get_ltor_masks_and_position_ids( |
|
data, |
|
eod_token, |
|
reset_position_ids, |
|
reset_attention_mask, |
|
eod_mask_loss, |
|
): |
|
"""Build masks and position id for left to right model.""" |
|
|
|
|
|
micro_batch_size, seq_length = data.size() |
|
|
|
|
|
if reset_attention_mask: |
|
att_mask_batch = micro_batch_size |
|
else: |
|
att_mask_batch = 1 |
|
attention_mask = torch.tril( |
|
torch.ones((att_mask_batch, seq_length, seq_length), device=data.device) |
|
).view(att_mask_batch, 1, seq_length, seq_length) |
|
|
|
|
|
loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device) |
|
if eod_mask_loss: |
|
loss_mask[data == eod_token] = 0.0 |
|
|
|
|
|
position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device) |
|
position_ids = position_ids.unsqueeze(0).expand_as(data) |
|
|
|
if reset_position_ids: |
|
position_ids = position_ids.clone() |
|
|
|
if reset_position_ids or reset_attention_mask: |
|
|
|
for b in range(micro_batch_size): |
|
|
|
|
|
eod_index = position_ids[b, data[b] == eod_token] |
|
|
|
if reset_position_ids: |
|
eod_index = eod_index.clone() |
|
|
|
|
|
prev_index = 0 |
|
for j in range(eod_index.size()[0]): |
|
i = eod_index[j] |
|
|
|
if reset_attention_mask: |
|
attention_mask[b, 0, (i + 1) :, : (i + 1)] = 0 |
|
|
|
if reset_position_ids: |
|
position_ids[b, (i + 1) :] -= i + 1 - prev_index |
|
prev_index = i + 1 |
|
|
|
|
|
attention_mask = attention_mask < 0.5 |
|
|
|
return attention_mask, loss_mask, position_ids |
|
|
|
|
|
def get_batch(context_tokens: torch.LongTensor, eod_id: int): |
|
"""Generate batch from context tokens.""" |
|
|
|
tokens = context_tokens.contiguous().to(context_tokens.device) |
|
|
|
attention_mask, _, position_ids = get_ltor_masks_and_position_ids( |
|
tokens, |
|
eod_id, |
|
reset_position_ids=False, |
|
reset_attention_mask=False, |
|
eod_mask_loss=False, |
|
) |
|
return tokens, attention_mask, position_ids |
|
|
|
|
|
def get_stop_words_ids(chat_format, tokenizer): |
|
if chat_format == "raw": |
|
stop_words_ids = [tokenizer.encode("Human:"), [tokenizer.eod_id]] |
|
elif chat_format == "chatml": |
|
stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]] |
|
else: |
|
raise NotImplementedError(f"Unknown chat format {chat_format!r}") |
|
return stop_words_ids |
|
|
|
|
|
def make_context( |
|
tokenizer: PreTrainedTokenizer, |
|
query: str, |
|
history: List[Tuple[str, str]] = None, |
|
system: str = "", |
|
max_window_size: int = 8192, |
|
chat_format: str = "chatml", |
|
): |
|
if history is None: |
|
history = [] |
|
|
|
if chat_format == "chatml": |
|
im_start, im_end = "<|im_start|>", "<|im_end|>" |
|
im_start_tokens = [tokenizer.im_start_id] |
|
im_end_tokens = [tokenizer.im_end_id] |
|
nl_tokens = tokenizer.encode("\n") |
|
|
|
def _tokenize_str(role, content): |
|
return f"{role}\n{content}", tokenizer.encode( |
|
role |
|
) + nl_tokens + tokenizer.encode(content) |
|
|
|
system_text, system_tokens_part = _tokenize_str("system", system) |
|
system_tokens = im_start_tokens + system_tokens_part + im_end_tokens |
|
|
|
raw_text = "" |
|
context_tokens = [] |
|
|
|
for turn_query, turn_response in reversed(history): |
|
query_text, query_tokens_part = _tokenize_str("user", turn_query) |
|
query_tokens = im_start_tokens + query_tokens_part + im_end_tokens |
|
response_text, response_tokens_part = _tokenize_str( |
|
"assistant", turn_response |
|
) |
|
response_tokens = im_start_tokens + response_tokens_part + im_end_tokens |
|
|
|
next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens |
|
prev_chat = ( |
|
f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}" |
|
) |
|
|
|
current_context_size = ( |
|
len(system_tokens) + len(next_context_tokens) + len(context_tokens) |
|
) |
|
if current_context_size < max_window_size: |
|
context_tokens = next_context_tokens + context_tokens |
|
raw_text = prev_chat + raw_text |
|
else: |
|
break |
|
|
|
context_tokens = system_tokens + context_tokens |
|
raw_text = f"{im_start}{system_text}{im_end}" + raw_text |
|
context_tokens += ( |
|
nl_tokens |
|
+ im_start_tokens |
|
+ _tokenize_str("user", query)[1] |
|
+ im_end_tokens |
|
+ nl_tokens |
|
+ im_start_tokens |
|
+ tokenizer.encode("assistant") |
|
+ nl_tokens |
|
) |
|
raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n" |
|
|
|
elif chat_format == "raw": |
|
raw_text = query |
|
context_tokens = tokenizer.encode(raw_text) |
|
else: |
|
raise NotImplementedError(f"Unknown chat format {chat_format!r}") |
|
|
|
return raw_text, context_tokens |
|
|
|
|
|
def _decode_default( |
|
tokens: List[int], |
|
*, |
|
stop_words: List[str], |
|
eod_words: List[str], |
|
tokenizer: PreTrainedTokenizer, |
|
raw_text_len: int, |
|
verbose: bool = False, |
|
return_end_reason: bool = False, |
|
): |
|
trim_decode_tokens = tokenizer.decode(tokens)[raw_text_len:] |
|
if verbose: |
|
print("\nRaw Generate: ", trim_decode_tokens) |
|
|
|
end_reason = f"Gen length {len(tokens)}" |
|
for stop_word in stop_words: |
|
trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip() |
|
for eod_word in eod_words: |
|
if eod_word in trim_decode_tokens: |
|
end_reason = f"Gen {eod_word!r}" |
|
trim_decode_tokens = trim_decode_tokens.split(eod_word)[0] |
|
trim_decode_tokens = trim_decode_tokens.strip() |
|
if verbose: |
|
print("\nEnd Reason:", end_reason) |
|
print("\nGenerate: ", trim_decode_tokens) |
|
|
|
if return_end_reason: |
|
return trim_decode_tokens, end_reason |
|
else: |
|
return trim_decode_tokens |
|
|
|
|
|
def _decode_chatml( |
|
tokens: List[int], |
|
*, |
|
stop_words: List[str], |
|
eod_token_ids: List[int], |
|
tokenizer: PreTrainedTokenizer, |
|
raw_text_len: int, |
|
context_length: int, |
|
verbose: bool = False, |
|
return_end_reason: bool = False, |
|
): |
|
end_reason = f"Gen length {len(tokens)}" |
|
eod_token_idx = context_length |
|
for eod_token_idx in range(context_length, len(tokens)): |
|
if tokens[eod_token_idx] in eod_token_ids: |
|
end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]])!r}" |
|
break |
|
|
|
trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx])[raw_text_len:] |
|
if verbose: |
|
print("\nRaw Generate w/o EOD:", tokenizer.decode(tokens)[raw_text_len:]) |
|
print("\nRaw Generate:", trim_decode_tokens) |
|
print("\nEnd Reason:", end_reason) |
|
for stop_word in stop_words: |
|
trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip() |
|
trim_decode_tokens = trim_decode_tokens.strip() |
|
if verbose: |
|
print("\nGenerate:", trim_decode_tokens) |
|
|
|
if return_end_reason: |
|
return trim_decode_tokens, end_reason |
|
else: |
|
return trim_decode_tokens |
|
|
|
|
|
def decode_tokens( |
|
tokens: Union[torch.LongTensor, TokensType], |
|
tokenizer: PreTrainedTokenizer, |
|
raw_text_len: int, |
|
context_length: int, |
|
chat_format: str, |
|
verbose: bool = False, |
|
return_end_reason: bool = False, |
|
) -> str: |
|
if torch.is_tensor(tokens): |
|
tokens = tokens.cpu().numpy().tolist() |
|
|
|
if chat_format == "chatml": |
|
return _decode_chatml( |
|
tokens, |
|
stop_words=[], |
|
eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id], |
|
tokenizer=tokenizer, |
|
raw_text_len=raw_text_len, |
|
context_length=context_length, |
|
verbose=verbose, |
|
return_end_reason=return_end_reason, |
|
) |
|
elif chat_format == "raw": |
|
return _decode_default( |
|
tokens, |
|
stop_words=["<|endoftext|>"], |
|
eod_words=["<|endoftext|>"], |
|
tokenizer=tokenizer, |
|
raw_text_len=raw_text_len, |
|
verbose=verbose, |
|
return_end_reason=return_end_reason, |
|
) |
|
else: |
|
raise NotImplementedError(f"Unknown chat format {chat_format!r}") |
|
|
|
|
|
class StopWordsLogitsProcessor(LogitsProcessor): |
|
""" |
|
:class:`transformers.LogitsProcessor` that enforces that when specified sequences appear, stop geration. |
|
|
|
Args: |
|
stop_words_ids (:obj:`List[List[int]]`): |
|
List of list of token ids of stop ids. In order to get the tokens of the words |
|
that should not appear in the generated text, use :obj:`tokenizer(bad_word, |
|
add_prefix_space=True).input_ids`. |
|
eos_token_id (:obj:`int`): |
|
The id of the `end-of-sequence` token. |
|
""" |
|
|
|
def __init__(self, stop_words_ids: Iterable[Iterable[int]], eos_token_id: int): |
|
|
|
if not isinstance(stop_words_ids, List) or len(stop_words_ids) == 0: |
|
raise ValueError( |
|
f"`stop_words_ids` has to be a non-emtpy list, but is {stop_words_ids}." |
|
) |
|
if any(not isinstance(bad_word_ids, list) for bad_word_ids in stop_words_ids): |
|
raise ValueError( |
|
f"`stop_words_ids` has to be a list of lists, but is {stop_words_ids}." |
|
) |
|
if any( |
|
any( |
|
(not isinstance(token_id, (int, np.integer)) or token_id < 0) |
|
for token_id in stop_word_ids |
|
) |
|
for stop_word_ids in stop_words_ids |
|
): |
|
raise ValueError( |
|
f"Each list in `stop_words_ids` has to be a list of positive integers, but is {stop_words_ids}." |
|
) |
|
|
|
self.stop_words_ids = list( |
|
filter( |
|
lambda bad_token_seq: bad_token_seq != [eos_token_id], stop_words_ids |
|
) |
|
) |
|
self.eos_token_id = eos_token_id |
|
for stop_token_seq in self.stop_words_ids: |
|
assert ( |
|
len(stop_token_seq) > 0 |
|
), "Stop words token sequences {} cannot have an empty list".format( |
|
stop_words_ids |
|
) |
|
|
|
def __call__( |
|
self, input_ids: torch.LongTensor, scores: torch.FloatTensor |
|
) -> torch.FloatTensor: |
|
stopped_samples = self._calc_stopped_samples(input_ids) |
|
for i, should_stop in enumerate(stopped_samples): |
|
if should_stop: |
|
scores[i, self.eos_token_id] = float(2**15) |
|
return scores |
|
|
|
def _tokens_match(self, prev_tokens: torch.LongTensor, tokens: List[int]) -> bool: |
|
if len(tokens) == 0: |
|
|
|
return True |
|
elif len(tokens) > len(prev_tokens): |
|
|
|
return False |
|
elif prev_tokens[-len(tokens) :].tolist() == tokens: |
|
|
|
return True |
|
else: |
|
return False |
|
|
|
def _calc_stopped_samples(self, prev_input_ids: Iterable[int]) -> Iterable[int]: |
|
stopped_samples = [] |
|
for prev_input_ids_slice in prev_input_ids: |
|
match = False |
|
for stop_token_seq in self.stop_words_ids: |
|
if self._tokens_match(prev_input_ids_slice, stop_token_seq): |
|
|
|
match = True |
|
break |
|
stopped_samples.append(match) |
|
|
|
return stopped_samples |
|
|
|
|
|
def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float("Inf")): |
|
"""This function has been mostly taken from huggingface conversational |
|
ai code at |
|
https://medium.com/huggingface/how-to-build-a-state-of-the-art- |
|
conversational-ai-with-transfer-learning-2d818ac26313""" |
|
|
|
if top_k > 0: |
|
|
|
|
|
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] |
|
logits[indices_to_remove] = filter_value |
|
|
|
if top_p > 0.0: |
|
|
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1) |
|
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) |
|
|
|
|
|
sorted_indices_to_remove = cumulative_probs > top_p |
|
|
|
|
|
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() |
|
sorted_indices_to_remove[..., 0] = 0 |
|
for i in range(sorted_indices.size(0)): |
|
indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]] |
|
logits[i][indices_to_remove] = filter_value |
|
|
|
return logits |
|
|
|
|
|
def switch(val1, val2, boolean): |
|
boolean = boolean.type_as(val1) |
|
return (1 - boolean) * val1 + boolean * val2 |
|
|