nes470 commited on
Commit
35c4cf3
1 Parent(s): 6f557e1

Upload 3 files

Browse files
Files changed (3) hide show
  1. LogRegBuzzer.py +93 -0
  2. qbmodel.py +61 -0
  3. tfidf.py +124 -0
LogRegBuzzer.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sklearn.linear_model import LogisticRegression
2
+ import joblib
3
+ from huggingface_hub import hf_hub_download
4
+ from transformers import pipeline
5
+ import pandas as pd
6
+
7
+
8
+ class LogisticRegressionBuzzer:
9
+
10
+ def __init__(self) -> None:
11
+ self.model = self.load_from_hf_pkl()
12
+ self.features = BuzzerFeatures()
13
+
14
+
15
+ def load_from_hf_pkl(self) -> LogisticRegression:
16
+ REPO_ID = "nes470/pipeline-as-repo"
17
+ FILENAME = "logreg_buzzer_model.pkl"
18
+
19
+ model = joblib.load(
20
+ hf_hub_download(repo_id=REPO_ID, filename=FILENAME)
21
+ )
22
+
23
+ return model
24
+
25
+ def predict_buzz(self, question, guess):
26
+ X = self.features.get_features(question, guess)
27
+
28
+ X_formatted = pd.DataFrame(X, index=[0])
29
+ pred = self.model.predict(X_formatted)
30
+
31
+ print(pred)
32
+ #use predict_proba to get confidence probabilities
33
+ prob_pred = self.model.predict_proba(X_formatted)
34
+ print(prob_pred)
35
+
36
+ return (pred, float(pred[0]))
37
+
38
+
39
+
40
+
41
+ class BuzzerFeatures:
42
+ def __init__(self) -> None:
43
+ self.ner = pipeline("ner")
44
+
45
+ #returns dict with all the features
46
+ def get_features(self, question, guess):
47
+ sent_count = self.sentence_count(question)
48
+ guess_word_count = self.guess_word_count(guess)
49
+ guess_has_paren = self.guess_has_paren(guess)
50
+ guess_length = self.guess_length(guess)
51
+ guess_entity = self.guess_entity(guess)
52
+
53
+ feats = {'sentence_count':sent_count, 'guess_word_count':guess_word_count,
54
+ 'guess_has_paren':guess_has_paren, 'guess_length':guess_length}
55
+
56
+ X = feats | guess_entity
57
+
58
+ return X
59
+
60
+
61
+
62
+
63
+ def sentence_count(self, str):
64
+ return len(str.split("."))
65
+
66
+ def guess_word_count(self, str):
67
+ return len(str.split("_"))
68
+
69
+ def guess_has_paren(self, str):
70
+ return int("(" in str or ")" in str)
71
+
72
+ def guess_length(self, str):
73
+ return len(str)
74
+
75
+ def guess_entity(self, text):
76
+ entities = self.ner(text)
77
+ if len(entities) == 0:
78
+ type = "" # <-- use "None" instead TODO
79
+ else:
80
+ type = entities[0]["entity"]
81
+
82
+ if type == "":
83
+ return {'':1, 'I-LOC':0, 'I-MISC':0, 'I-ORG':0, 'I-PER':0}
84
+ if type == "I-LOC":
85
+ return {'':0, 'I-LOC':1, 'I-MISC':0, 'I-ORG':0, 'I-PER':0}
86
+ if type == "I-MISC":
87
+ return {'':0, 'I-LOC':0, 'I-MISC':1, 'I-ORG':0, 'I-PER':0}
88
+ if type == "I-ORG":
89
+ return {'':0, 'I-LOC':0, 'I-MISC':0, 'I-ORG':1, 'I-PER':0}
90
+ if type == "I-PER":
91
+ return {'':0, 'I-LOC':0, 'I-MISC':0, 'I-ORG':0, 'I-PER':1}
92
+
93
+
qbmodel.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Tuple
2
+ import nltk
3
+ import sklearn
4
+ from tfidf import TfidfWikiGuesser
5
+ import numpy as np
6
+ import pandas as pd
7
+ from LogRegBuzzer import LogisticRegressionBuzzer
8
+
9
+
10
+ class QuizBowlModel:
11
+
12
+ def __init__(self, use_hf_pkl = False):
13
+ """
14
+ Load your model(s) and whatever else you need in this function.
15
+
16
+ Do NOT load your model or resources in the guess_and_buzz() function,
17
+ as it will increase latency severely.
18
+ """
19
+ #best accuracy when using wiki_page_text.json
20
+ self.guesser = TfidfWikiGuesser(wikidump=None, use_hf_pkl= use_hf_pkl) #can specify different wikidump if needed
21
+ print("guesser model loaded")
22
+
23
+ self.buzzer = LogisticRegressionBuzzer()
24
+ print("buzzer model loaded")
25
+
26
+
27
+ def guess_and_buzz(self, question_text: List[str]) -> List[Tuple[str, bool]]:
28
+ """
29
+ This function accepts a list of question strings, and returns a list of tuples containing
30
+ strings representing the guess and corresponding booleans representing
31
+ whether or not to buzz.
32
+
33
+ So, guess_and_buzz(["This is a question"]) should return [("answer", False)]
34
+
35
+ If you are using a deep learning model, try to use batched prediction instead of
36
+ iterating using a for loop.
37
+ """
38
+
39
+ answers = []
40
+ top_guesses = 3 #guesser will return this amount guesses for each question (in sorted confidence)
41
+
42
+ for question in question_text:
43
+ guesses = self.guesser.make_guess(question, num_guesses=top_guesses)
44
+ # print(f"\n\n\n answered {len(answers)} questions so far \n\n")
45
+ # print(f"left to answer {len(question_text)-len(answers)} questions \n\n ")
46
+ # print(f"progress: {(len(answers)/len(question_text)) * 100} \n\n")
47
+
48
+ #do the buzzing
49
+ buzz = self.buzzer.predict_buzz(question, guesses[0])
50
+
51
+
52
+ #make a tuple and add to answers list
53
+ tup = (guesses[0], buzz[1])
54
+ print(tup)
55
+ answers.append(tup)
56
+ #might neeed to format guees like replace _ with space
57
+
58
+ return answers
59
+
60
+
61
+
tfidf.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sklearn.feature_extraction.text import TfidfVectorizer
2
+ from sklearn.metrics.pairwise import cosine_similarity
3
+ import numpy as np
4
+ import json
5
+ import zipfile
6
+ import pickle
7
+ import os
8
+ from nltk.corpus import stopwords
9
+ from nltk.tokenize import word_tokenize
10
+ from nltk.stem import WordNetLemmatizer
11
+ from huggingface_hub import hf_hub_download
12
+ import joblib
13
+
14
+
15
+ class TfidfWikiGuesser:
16
+ def __init__(self, wikidump = 'resources/wiki_text_16.json', use_hf_pkl = False) -> None:
17
+ self.tfidf = None
18
+ self.corpus = None
19
+ self.titles = None
20
+ self.vectorizer = None
21
+ self.lemmatizer = WordNetLemmatizer()
22
+ model_file = "processed_tfidf_wiki_page_text_model.pkl" # <--- has best acc so far (using wiki_page_text.json from gdrive folder)
23
+ #model_file = "processed_large_wiki_text_model.pkl"
24
+ #model_file = "processed_tfidf_wiki_16_model.pkl"
25
+ # full_model_path = model_file
26
+ full_model_path = os.path.join("./models", model_file)
27
+
28
+ if(use_hf_pkl):
29
+ REPO_ID = "nes470/pipeline-as-repo"
30
+ FILENAME = "processed_tfidf_wiki_page_text_model.pkl"
31
+
32
+ model = joblib.load(
33
+ hf_hub_download(repo_id=REPO_ID, filename=FILENAME)
34
+ )
35
+
36
+
37
+ print("loading from hugginface pkl file")
38
+ self.load_from_pk_direct(model)
39
+ else:
40
+ if os.path.exists(full_model_path):
41
+ print("Loading model from pickle...")
42
+ self.load_from_pkl(full_model_path)
43
+ else:
44
+ if wikidump:
45
+ print("No pre-trained model found, loading data from dump...")
46
+ self.load_model(wikidump)
47
+ self.save_model(full_model_path)
48
+ # self.load_model(wikidump)
49
+
50
+ def load_model(self, wikidump):
51
+ # wiki dump is an json array of json objects with page and text fields
52
+ with open(wikidump) as f:
53
+ doc = json.load(f)
54
+ # with zipfile.ZipFile('resources/wiki_text_8.json.zip', 'r') as z:
55
+ # with z.open('wiki_text_8.json') as f:
56
+ # doc = json.load(f)
57
+
58
+
59
+ self.corpus, self.titles = self.create_corpus(doc)
60
+
61
+ self.vectorizer = TfidfVectorizer(stop_words='english')
62
+ self.tfidf = self.vectorizer.fit_transform(self.corpus)
63
+
64
+ def preprocess_text(self,text):
65
+ if type(text) == float:
66
+ return str(text)
67
+ tokens = word_tokenize(text.lower())
68
+ filtered_tokens = [token for token in tokens if token not in stopwords.words('english')]
69
+ lemmatized_tokens = [self.lemmatizer.lemmatize(token) for token in filtered_tokens]
70
+ processed_text = ' '.join(lemmatized_tokens)
71
+ return processed_text
72
+
73
+ def create_corpus(self, json_file):
74
+ corpus = []
75
+ page_titles = []
76
+
77
+ for json_obj in json_file:
78
+ # corpus.append(json_obj['text'])
79
+ #corpus.append(self.preprocess_text(json_obj['text']))
80
+ corpus.append(json_obj['text'])
81
+ page_titles.append(json_obj['page'])
82
+
83
+ return (corpus, page_titles)
84
+
85
+ def make_guess(self, question, num_guesses = 1):
86
+ tfidf_question = self.vectorizer.transform([question])
87
+
88
+ sim = cosine_similarity(self.tfidf, tfidf_question)
89
+
90
+ #get indices of best matching documents and use it to get (num_guesses) top documents
91
+ sim_indices = np.argsort(sim.flatten())[::-1]
92
+ best_indices = sim_indices[:num_guesses]
93
+
94
+ # best_docs = []
95
+ best_guesses = []
96
+ for i in best_indices:
97
+ # best_docs.append(self.corpus[i])
98
+ best_guesses.append(self.titles[i])
99
+
100
+ return best_guesses
101
+
102
+ def save_model(self, file_name):
103
+ with open(file_name, 'wb') as f:
104
+ pickle.dump({
105
+ 'vectorizer': self.vectorizer,
106
+ 'tfidf_matrix': self.tfidf,
107
+ 'titles': self.titles,
108
+ # 'corpus': self.corpus
109
+ }, f)
110
+
111
+ def load_from_pkl(self, file_name):
112
+ with open(file_name, 'rb') as f:
113
+ data = pickle.load(f)
114
+ self.vectorizer = data['vectorizer']
115
+ self.tfidf = data['tfidf_matrix']
116
+ self.titles = data['titles']
117
+ # self.corpus = data['corpus']
118
+
119
+ def load_from_pk_direct(self, pkl):
120
+ #data = pickle.load(pkl)
121
+ data = pkl
122
+ self.vectorizer = data['vectorizer']
123
+ self.tfidf = data['tfidf_matrix']
124
+ self.titles = data['titles']