End of training
Browse files
README.md
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- trl
|
6 |
+
- sft
|
7 |
+
- generated_from_trainer
|
8 |
+
base_model: mistralai/Mistral-7B-v0.1
|
9 |
+
model-index:
|
10 |
+
- name: lc_random_repeat
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# lc_random_repeat
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 1.6186
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 2e-05
|
41 |
+
- train_batch_size: 1
|
42 |
+
- eval_batch_size: 1
|
43 |
+
- seed: 42
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: cosine
|
46 |
+
- num_epochs: 50
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
51 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
52 |
+
| 1.4379 | 1.0 | 179 | 1.4131 |
|
53 |
+
| 1.4264 | 2.0 | 358 | 1.3916 |
|
54 |
+
| 1.3008 | 3.0 | 537 | 1.3836 |
|
55 |
+
| 1.3527 | 4.0 | 716 | 1.3795 |
|
56 |
+
| 1.3232 | 5.0 | 895 | 1.3847 |
|
57 |
+
| 1.123 | 6.0 | 1074 | 1.3991 |
|
58 |
+
| 1.2001 | 7.0 | 1253 | 1.3956 |
|
59 |
+
| 1.2633 | 8.0 | 1432 | 1.4122 |
|
60 |
+
| 1.246 | 9.0 | 1611 | 1.4136 |
|
61 |
+
| 1.1377 | 10.0 | 1790 | 1.4250 |
|
62 |
+
| 1.1705 | 11.0 | 1969 | 1.4381 |
|
63 |
+
| 1.1582 | 12.0 | 2148 | 1.4502 |
|
64 |
+
| 1.1204 | 13.0 | 2327 | 1.4652 |
|
65 |
+
| 1.164 | 14.0 | 2506 | 1.4837 |
|
66 |
+
| 1.1277 | 15.0 | 2685 | 1.4842 |
|
67 |
+
| 1.0011 | 16.0 | 2864 | 1.5123 |
|
68 |
+
| 1.018 | 17.0 | 3043 | 1.5116 |
|
69 |
+
| 1.0135 | 18.0 | 3222 | 1.5332 |
|
70 |
+
| 1.0115 | 19.0 | 3401 | 1.5386 |
|
71 |
+
| 0.9707 | 20.0 | 3580 | 1.5623 |
|
72 |
+
| 1.105 | 21.0 | 3759 | 1.5591 |
|
73 |
+
| 1.0399 | 22.0 | 3938 | 1.5469 |
|
74 |
+
| 1.0203 | 23.0 | 4117 | 1.5725 |
|
75 |
+
| 1.0629 | 24.0 | 4296 | 1.5643 |
|
76 |
+
| 0.9934 | 25.0 | 4475 | 1.5698 |
|
77 |
+
| 0.9231 | 26.0 | 4654 | 1.5924 |
|
78 |
+
| 0.9423 | 27.0 | 4833 | 1.5916 |
|
79 |
+
| 1.0153 | 28.0 | 5012 | 1.5976 |
|
80 |
+
| 0.9623 | 29.0 | 5191 | 1.6060 |
|
81 |
+
| 0.796 | 30.0 | 5370 | 1.6051 |
|
82 |
+
| 0.9592 | 31.0 | 5549 | 1.6067 |
|
83 |
+
| 0.9507 | 32.0 | 5728 | 1.6060 |
|
84 |
+
| 0.7748 | 33.0 | 5907 | 1.6183 |
|
85 |
+
| 1.0306 | 34.0 | 6086 | 1.6126 |
|
86 |
+
| 0.8095 | 35.0 | 6265 | 1.6120 |
|
87 |
+
| 0.8423 | 36.0 | 6444 | 1.6163 |
|
88 |
+
| 0.8873 | 37.0 | 6623 | 1.6162 |
|
89 |
+
| 0.9068 | 38.0 | 6802 | 1.6177 |
|
90 |
+
| 0.9126 | 39.0 | 6981 | 1.6182 |
|
91 |
+
| 0.948 | 40.0 | 7160 | 1.6169 |
|
92 |
+
| 0.8804 | 41.0 | 7339 | 1.6188 |
|
93 |
+
| 0.8854 | 42.0 | 7518 | 1.6185 |
|
94 |
+
| 0.8272 | 43.0 | 7697 | 1.6170 |
|
95 |
+
| 0.9812 | 44.0 | 7876 | 1.6179 |
|
96 |
+
| 0.8171 | 45.0 | 8055 | 1.6183 |
|
97 |
+
| 0.8417 | 46.0 | 8234 | 1.6177 |
|
98 |
+
| 0.9621 | 47.0 | 8413 | 1.6188 |
|
99 |
+
| 0.9239 | 48.0 | 8592 | 1.6179 |
|
100 |
+
| 0.9687 | 49.0 | 8771 | 1.6189 |
|
101 |
+
| 0.8301 | 50.0 | 8950 | 1.6186 |
|
102 |
+
|
103 |
+
|
104 |
+
### Framework versions
|
105 |
+
|
106 |
+
- PEFT 0.11.1
|
107 |
+
- Transformers 4.41.2
|
108 |
+
- Pytorch 2.1.0+cu118
|
109 |
+
- Datasets 2.19.2
|
110 |
+
- Tokenizers 0.19.1
|