|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging
|
|
|
import os
|
|
|
import re
|
|
|
from glob import glob
|
|
|
from pathlib import Path
|
|
|
|
|
|
from huggingface_hub.constants import SAFETENSORS_SINGLE_FILE
|
|
|
from termcolor import colored
|
|
|
|
|
|
from lerobot.common.constants import PRETRAINED_MODEL_DIR
|
|
|
from lerobot.configs.train import TrainPipelineConfig
|
|
|
|
|
|
|
|
|
def cfg_to_group(cfg: TrainPipelineConfig, return_list: bool = False) -> list[str] | str:
|
|
|
"""Return a group name for logging. Optionally returns group name as list."""
|
|
|
lst = [
|
|
|
f"policy:{cfg.policy.type}",
|
|
|
f"seed:{cfg.seed}",
|
|
|
]
|
|
|
if cfg.dataset is not None:
|
|
|
lst.append(f"dataset:{cfg.dataset.repo_id}")
|
|
|
if cfg.env is not None:
|
|
|
lst.append(f"env:{cfg.env.type}")
|
|
|
return lst if return_list else "-".join(lst)
|
|
|
|
|
|
|
|
|
def get_wandb_run_id_from_filesystem(log_dir: Path) -> str:
|
|
|
|
|
|
paths = glob(str(log_dir / "wandb/latest-run/run-*"))
|
|
|
if len(paths) != 1:
|
|
|
raise RuntimeError("Couldn't get the previous WandB run ID for run resumption.")
|
|
|
match = re.search(r"run-([^\.]+).wandb", paths[0].split("/")[-1])
|
|
|
if match is None:
|
|
|
raise RuntimeError("Couldn't get the previous WandB run ID for run resumption.")
|
|
|
wandb_run_id = match.groups(0)[0]
|
|
|
return wandb_run_id
|
|
|
|
|
|
|
|
|
def get_safe_wandb_artifact_name(name: str):
|
|
|
"""WandB artifacts don't accept ":" or "/" in their name."""
|
|
|
return name.replace(":", "_").replace("/", "_")
|
|
|
|
|
|
|
|
|
class WandBLogger:
|
|
|
"""A helper class to log object using wandb."""
|
|
|
|
|
|
def __init__(self, cfg: TrainPipelineConfig):
|
|
|
self.cfg = cfg.wandb
|
|
|
self.log_dir = cfg.output_dir
|
|
|
self.job_name = cfg.job_name
|
|
|
self.env_fps = cfg.env.fps if cfg.env else None
|
|
|
self._group = cfg_to_group(cfg)
|
|
|
|
|
|
|
|
|
os.environ["WANDB_SILENT"] = "True"
|
|
|
import wandb
|
|
|
|
|
|
wandb_run_id = (
|
|
|
cfg.wandb.run_id
|
|
|
if cfg.wandb.run_id
|
|
|
else get_wandb_run_id_from_filesystem(self.log_dir)
|
|
|
if cfg.resume
|
|
|
else None
|
|
|
)
|
|
|
wandb.init(
|
|
|
id=wandb_run_id,
|
|
|
project=self.cfg.project,
|
|
|
entity=self.cfg.entity,
|
|
|
name=self.job_name,
|
|
|
notes=self.cfg.notes,
|
|
|
tags=cfg_to_group(cfg, return_list=True),
|
|
|
dir=self.log_dir,
|
|
|
config=cfg.to_dict(),
|
|
|
|
|
|
save_code=False,
|
|
|
|
|
|
job_type="train_eval",
|
|
|
resume="must" if cfg.resume else None,
|
|
|
mode=self.cfg.mode if self.cfg.mode in ["online", "offline", "disabled"] else "online",
|
|
|
)
|
|
|
run_id = wandb.run.id
|
|
|
|
|
|
|
|
|
cfg.wandb.run_id = run_id
|
|
|
|
|
|
self._wandb_custom_step_key: set[str] | None = None
|
|
|
print(colored("Logs will be synced with wandb.", "blue", attrs=["bold"]))
|
|
|
logging.info(f"Track this run --> {colored(wandb.run.get_url(), 'yellow', attrs=['bold'])}")
|
|
|
self._wandb = wandb
|
|
|
|
|
|
def log_policy(self, checkpoint_dir: Path):
|
|
|
"""Checkpoints the policy to wandb."""
|
|
|
if self.cfg.disable_artifact:
|
|
|
return
|
|
|
|
|
|
step_id = checkpoint_dir.name
|
|
|
artifact_name = f"{self._group}-{step_id}"
|
|
|
artifact_name = get_safe_wandb_artifact_name(artifact_name)
|
|
|
artifact = self._wandb.Artifact(artifact_name, type="model")
|
|
|
artifact.add_file(checkpoint_dir / PRETRAINED_MODEL_DIR / SAFETENSORS_SINGLE_FILE)
|
|
|
self._wandb.log_artifact(artifact)
|
|
|
|
|
|
def log_dict(
|
|
|
self, d: dict, step: int | None = None, mode: str = "train", custom_step_key: str | None = None
|
|
|
):
|
|
|
if mode not in {"train", "eval"}:
|
|
|
raise ValueError(mode)
|
|
|
if step is None and custom_step_key is None:
|
|
|
raise ValueError("Either step or custom_step_key must be provided.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if custom_step_key is not None:
|
|
|
if self._wandb_custom_step_key is None:
|
|
|
self._wandb_custom_step_key = set()
|
|
|
new_custom_key = f"{mode}/{custom_step_key}"
|
|
|
if new_custom_key not in self._wandb_custom_step_key:
|
|
|
self._wandb_custom_step_key.add(new_custom_key)
|
|
|
self._wandb.define_metric(new_custom_key, hidden=True)
|
|
|
|
|
|
for k, v in d.items():
|
|
|
if not isinstance(v, (int, float, str)):
|
|
|
logging.warning(
|
|
|
f'WandB logging of key "{k}" was ignored as its type "{type(v)}" is not handled by this wrapper.'
|
|
|
)
|
|
|
continue
|
|
|
|
|
|
|
|
|
if self._wandb_custom_step_key is not None and k in self._wandb_custom_step_key:
|
|
|
continue
|
|
|
|
|
|
if custom_step_key is not None:
|
|
|
value_custom_step = d[custom_step_key]
|
|
|
data = {f"{mode}/{k}": v, f"{mode}/{custom_step_key}": value_custom_step}
|
|
|
self._wandb.log(data)
|
|
|
continue
|
|
|
|
|
|
self._wandb.log(data={f"{mode}/{k}": v}, step=step)
|
|
|
|
|
|
def log_video(self, video_path: str, step: int, mode: str = "train"):
|
|
|
if mode not in {"train", "eval"}:
|
|
|
raise ValueError(mode)
|
|
|
|
|
|
wandb_video = self._wandb.Video(video_path, fps=self.env_fps, format="mp4")
|
|
|
self._wandb.log({f"{mode}/video": wandb_video}, step=step)
|
|
|
|