a2c-PandaReachDense-v2 / config.json
neatbullshit's picture
next commit
c8a9b04
raw
history blame
15.6 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fef0ca2c700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fef0ca22d40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685140598345463921, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAJZXrPleCKbzJ9hM/JZXrPleCKbzJ9hM/JZXrPleCKbzJ9hM/JZXrPleCKbzJ9hM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+q65v1Egsb8NQsO/fJwPPx9a9r6ia4W/pGcgP0MUAD8ym9s/hhehvxl/tD/6O8o/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAlles+V4IpvMn2Ez//jJ87BN44u2C28zslles+V4IpvMn2Ez//jJ87BN44u2C28zslles+V4IpvMn2Ez//jJ87BN44u2C28zslles+V4IpvMn2Ez//jJ87BN44u2C28zuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.46012226 -0.01034602 0.5779844 ]\n [ 0.46012226 -0.01034602 0.5779844 ]\n [ 0.46012226 -0.01034602 0.5779844 ]\n [ 0.46012226 -0.01034602 0.5779844 ]]", "desired_goal": "[[-1.4506524 -1.3837987 -1.5254532 ]\n [ 0.5609815 -0.48115632 -1.0423472 ]\n [ 0.62658143 0.50030917 1.7156737 ]\n [-1.2585304 1.4101287 1.5799553 ]]", "observation": "[[ 0.46012226 -0.01034602 0.5779844 0.0048691 -0.00282085 0.00743751]\n [ 0.46012226 -0.01034602 0.5779844 0.0048691 -0.00282085 0.00743751]\n [ 0.46012226 -0.01034602 0.5779844 0.0048691 -0.00282085 0.00743751]\n [ 0.46012226 -0.01034602 0.5779844 0.0048691 -0.00282085 0.00743751]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAjnjMPPMxmb0s5S09i5LyPQUqFz4B8ys+i435u2Va573GjWc+YmiBvc+m5z1vqGU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02495983 -0.0748023 0.04245488]\n [ 0.11844357 0.14762123 0.16791917]\n [-0.00761575 -0.11296538 0.22612676]\n [-0.06318738 0.11311113 0.22427534]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdA0zNJ5ICsCUhpRSlIwBbJRLMowBdJRHQKj+KkC3gDR1fZQoaAZoCWgPQwgz+zxGeYYSwJSGlFKUaBVLMmgWR0Co/fE6T4cndX2UKGgGaAloD0MIFHZR9MBnFsCUhpRSlGgVSzJoFkdAqP2vnuAqeHV9lChoBmgJaA9DCD2cwHRaJxHAlIaUUpRoFUsyaBZHQKj9a32mHgx1fZQoaAZoCWgPQwhgx3+BIMAXwJSGlFKUaBVLMmgWR0Co/xfoaDPGdX2UKGgGaAloD0MIPbfQlQiUFcCUhpRSlGgVSzJoFkdAqP7e5lOGkHV9lChoBmgJaA9DCGpN845TNBfAlIaUUpRoFUsyaBZHQKj+nULlV951fZQoaAZoCWgPQwjlszwP7k4IwJSGlFKUaBVLMmgWR0Co/lkwevIPdX2UKGgGaAloD0MIHOviNhpwE8CUhpRSlGgVSzJoFkdAqQAL9bX6InV9lChoBmgJaA9DCNWXpZ2aGxTAlIaUUpRoFUsyaBZHQKj/0vHLidd1fZQoaAZoCWgPQwgydy0hH9QSwJSGlFKUaBVLMmgWR0Co/5FbeMyadX2UKGgGaAloD0MIBmfw94uJFMCUhpRSlGgVSzJoFkdAqP9NRpDeCXV9lChoBmgJaA9DCFG7XwX4bhHAlIaUUpRoFUsyaBZHQKkA+DnvDxd1fZQoaAZoCWgPQwjpJ5zdWpYSwJSGlFKUaBVLMmgWR0CpAL80k4WDdX2UKGgGaAloD0MIvQFmvoMfGMCUhpRSlGgVSzJoFkdAqQB9zfaYeHV9lChoBmgJaA9DCCY3iqw19BbAlIaUUpRoFUsyaBZHQKkAObPQfIV1fZQoaAZoCWgPQwiCxHb3AN0YwJSGlFKUaBVLMmgWR0CpAeo/A0sOdX2UKGgGaAloD0MIzse1oWJsGMCUhpRSlGgVSzJoFkdAqQGxRwZOz3V9lChoBmgJaA9DCOOKi6NyExfAlIaUUpRoFUsyaBZHQKkBb642CNF1fZQoaAZoCWgPQwh6HXHIBlINwJSGlFKUaBVLMmgWR0CpASvSUkfLdX2UKGgGaAloD0MILo81I4MsFMCUhpRSlGgVSzJoFkdAqQLdBWxQi3V9lChoBmgJaA9DCHugFRiyuhXAlIaUUpRoFUsyaBZHQKkCpB55Z8t1fZQoaAZoCWgPQwgTJ/c7FHUUwJSGlFKUaBVLMmgWR0CpAmKPwNLEdX2UKGgGaAloD0MIyAp+G2JMFMCUhpRSlGgVSzJoFkdAqQIee18b73V9lChoBmgJaA9DCLITXoJTDxfAlIaUUpRoFUsyaBZHQKkDzD+irT91fZQoaAZoCWgPQwg34sluZsQYwJSGlFKUaBVLMmgWR0CpA5ONo8ISdX2UKGgGaAloD0MIKHy2Dg5GEcCUhpRSlGgVSzJoFkdAqQNSErXlKnV9lChoBmgJaA9DCJs6j4r/axbAlIaUUpRoFUsyaBZHQKkDDfXwsoV1fZQoaAZoCWgPQwhFSrN5HOYQwJSGlFKUaBVLMmgWR0CpBMRKHwgDdX2UKGgGaAloD0MIbAiOy7g5FcCUhpRSlGgVSzJoFkdAqQSLQ5WBBnV9lChoBmgJaA9DCInuWddoaRDAlIaUUpRoFUsyaBZHQKkESauOjqR1fZQoaAZoCWgPQwie6pCb4fYSwJSGlFKUaBVLMmgWR0CpBAWJzkp7dX2UKGgGaAloD0MIHCPZI9Q8FMCUhpRSlGgVSzJoFkdAqQWzH2h7FHV9lChoBmgJaA9DCJbqAl5miBbAlIaUUpRoFUsyaBZHQKkFehM8HOd1fZQoaAZoCWgPQwiNCwdCsnAUwJSGlFKUaBVLMmgWR0CpBTiSA6MjdX2UKGgGaAloD0MI+64I/rdSGMCUhpRSlGgVSzJoFkdAqQT0eZG8VnV9lChoBmgJaA9DCOBNt+wQ/xHAlIaUUpRoFUsyaBZHQKkGnv/io891fZQoaAZoCWgPQwgO2NXkKXsUwJSGlFKUaBVLMmgWR0CpBmXw1BMSdX2UKGgGaAloD0MIiGh0B7HjHMCUhpRSlGgVSzJoFkdAqQYkZDRc/3V9lChoBmgJaA9DCPnX8sr19hTAlIaUUpRoFUsyaBZHQKkF4DHOryV1fZQoaAZoCWgPQwi2EU92M3MXwJSGlFKUaBVLMmgWR0CpB4tq59VndX2UKGgGaAloD0MIWI0lrI0xGsCUhpRSlGgVSzJoFkdAqQdStxMnJHV9lChoBmgJaA9DCFlt/l91xBPAlIaUUpRoFUsyaBZHQKkHEdMj/uN1fZQoaAZoCWgPQwj8j0yHTt8YwJSGlFKUaBVLMmgWR0CpBs6j3225dX2UKGgGaAloD0MIuynltRIKGsCUhpRSlGgVSzJoFkdAqQkTSkTHsHV9lChoBmgJaA9DCHXniedscRnAlIaUUpRoFUsyaBZHQKkI2ujh1kl1fZQoaAZoCWgPQwiD3bBtURYZwJSGlFKUaBVLMmgWR0CpCJodMj/udX2UKGgGaAloD0MIS1gbYycMFsCUhpRSlGgVSzJoFkdAqQhYZ2pyZXV9lChoBmgJaA9DCOHRxhFrgRfAlIaUUpRoFUsyaBZHQKkKn60IC2d1fZQoaAZoCWgPQwhi2cwhqbUYwJSGlFKUaBVLMmgWR0CpCmfDDTBqdX2UKGgGaAloD0MI1T4djxnIFsCUhpRSlGgVSzJoFkdAqQomxKQJX3V9lChoBmgJaA9DCPPGSWHeIxrAlIaUUpRoFUsyaBZHQKkJ4yWzF/B1fZQoaAZoCWgPQwj1FDlE3PwXwJSGlFKUaBVLMmgWR0CpDCBjFyaNdX2UKGgGaAloD0MI2LYos0FGFcCUhpRSlGgVSzJoFkdAqQvn51vETHV9lChoBmgJaA9DCAiQoWMHVRfAlIaUUpRoFUsyaBZHQKkLptMPBi11fZQoaAZoCWgPQwjOFhBaD78YwJSGlFKUaBVLMmgWR0CpC2MZ5zHTdX2UKGgGaAloD0MI+Z/83Tv6F8CUhpRSlGgVSzJoFkdAqQ24/gR9PXV9lChoBmgJaA9DCHwqpz0lxxDAlIaUUpRoFUsyaBZHQKkNgZUDMeR1fZQoaAZoCWgPQwj12QHXFSMYwJSGlFKUaBVLMmgWR0CpDUCl7+kydX2UKGgGaAloD0MILubnhqZsGcCUhpRSlGgVSzJoFkdAqQz9Yp2ECnV9lChoBmgJaA9DCLYTJSGRxh3AlIaUUpRoFUsyaBZHQKkPYc3EQ5F1fZQoaAZoCWgPQwghIjXtYroXwJSGlFKUaBVLMmgWR0CpDym4AjptdX2UKGgGaAloD0MIKsdkcf9BGMCUhpRSlGgVSzJoFkdAqQ7pAlfJFXV9lChoBmgJaA9DCHtOet/4ihPAlIaUUpRoFUsyaBZHQKkOpZ7HAAR1fZQoaAZoCWgPQwivCz84n8oZwJSGlFKUaBVLMmgWR0CpEQD9wWFfdX2UKGgGaAloD0MIjSWsjbGDGcCUhpRSlGgVSzJoFkdAqRDIuscQy3V9lChoBmgJaA9DCG5rC89LhRzAlIaUUpRoFUsyaBZHQKkQiN1hb4d1fZQoaAZoCWgPQwgj2Lj+Xf8awJSGlFKUaBVLMmgWR0CpEEW0qpcYdX2UKGgGaAloD0MI8parH5vEGcCUhpRSlGgVSzJoFkdAqRKoj4YaYXV9lChoBmgJaA9DCHibN04KwxHAlIaUUpRoFUsyaBZHQKkScFlCkXV1fZQoaAZoCWgPQwiILxNFSP0cwJSGlFKUaBVLMmgWR0CpEi/QSi/PdX2UKGgGaAloD0MIjXvzGyaqGsCUhpRSlGgVSzJoFkdAqRHsvIwM6XV9lChoBmgJaA9DCE+uKZDZeRfAlIaUUpRoFUsyaBZHQKkT53Qla8p1fZQoaAZoCWgPQwhaY9AJodMbwJSGlFKUaBVLMmgWR0CpE650Syt3dX2UKGgGaAloD0MICcIVUKj3GsCUhpRSlGgVSzJoFkdAqRNs43m3fHV9lChoBmgJaA9DCIPab+1EKRbAlIaUUpRoFUsyaBZHQKkTKNMGorF1fZQoaAZoCWgPQwghkEsceaAXwJSGlFKUaBVLMmgWR0CpFNPW6K+BdX2UKGgGaAloD0MI4V8EjZmkGMCUhpRSlGgVSzJoFkdAqRSa2Yv38HV9lChoBmgJaA9DCMCw/Pm2YBfAlIaUUpRoFUsyaBZHQKkUWVC5Vfh1fZQoaAZoCWgPQwjkEHFzKnkXwJSGlFKUaBVLMmgWR0CpFBWHk92YdX2UKGgGaAloD0MI31FjQsyVGMCUhpRSlGgVSzJoFkdAqRXZrpJPInV9lChoBmgJaA9DCOzCD86nfhfAlIaUUpRoFUsyaBZHQKkVoM+/xlR1fZQoaAZoCWgPQwiP5PIf0t8YwJSGlFKUaBVLMmgWR0CpFV9Qfp2VdX2UKGgGaAloD0MI85ApH4L6GsCUhpRSlGgVSzJoFkdAqRUbOiWVvHV9lChoBmgJaA9DCC82rRQCWRzAlIaUUpRoFUsyaBZHQKkWxvrnkkt1fZQoaAZoCWgPQwji5elcUVodwJSGlFKUaBVLMmgWR0CpFo33QD3edX2UKGgGaAloD0MIIZBLHHmwGcCUhpRSlGgVSzJoFkdAqRZMV+I/JXV9lChoBmgJaA9DCF+Wdmou1xzAlIaUUpRoFUsyaBZHQKkWCDIzWPN1fZQoaAZoCWgPQwgWpBmLpiMTwJSGlFKUaBVLMmgWR0CpF8KDTSb6dX2UKGgGaAloD0MIi/uPTIeuFcCUhpRSlGgVSzJoFkdAqReJt78ejnV9lChoBmgJaA9DCJbtQ95yTSDAlIaUUpRoFUsyaBZHQKkXSC4Bmwt1fZQoaAZoCWgPQwgTmbnA5QEgwJSGlFKUaBVLMmgWR0CpFwQRwqAjdX2UKGgGaAloD0MInZ0MjpI3GMCUhpRSlGgVSzJoFkdAqRizc2zfJnV9lChoBmgJaA9DCCVa8nhafhrAlIaUUpRoFUsyaBZHQKkYeth/iHZ1fZQoaAZoCWgPQwh7FK5H4UoZwJSGlFKUaBVLMmgWR0CpGDmgi/widX2UKGgGaAloD0MIC9XNxd9WGsCUhpRSlGgVSzJoFkdAqRf1iWmgrnV9lChoBmgJaA9DCLr4254gwRPAlIaUUpRoFUsyaBZHQKkZuV45cTt1fZQoaAZoCWgPQwhtUzwuqqUWwJSGlFKUaBVLMmgWR0CpGYBcZ9/jdX2UKGgGaAloD0MIEW+df7s8E8CUhpRSlGgVSzJoFkdAqRk/dO6/ZnV9lChoBmgJaA9DCNyeILHdXRfAlIaUUpRoFUsyaBZHQKkY+11nuiN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}