|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Train loop for training the stage-I model."""
|
|
|
|
import functools
|
|
import importlib
|
|
import multiprocessing.pool
|
|
import os
|
|
|
|
from absl import app
|
|
from absl import flags
|
|
from absl import logging
|
|
from big_vision import input_pipeline
|
|
import big_vision.datasets.core as ds_core
|
|
import big_vision.evaluators.common as eval_common
|
|
import big_vision.optax as bv_optax
|
|
import big_vision.pp.builder as pp_builder
|
|
import big_vision.utils as u
|
|
from clu import parameter_overview
|
|
import flax
|
|
import jax
|
|
import jax.numpy as jnp
|
|
from ml_collections import config_flags
|
|
import numpy as np
|
|
import optax
|
|
|
|
import tensorflow.io.gfile as gfile
|
|
|
|
|
|
SG = jax.lax.stop_gradient
|
|
partial = functools.partial
|
|
|
|
config_flags.DEFINE_config_file(
|
|
"config", None, "Training configuration.", lock_config=True)
|
|
|
|
flags.DEFINE_string("workdir", default=None, help="Work unit directory.")
|
|
flags.DEFINE_boolean("cleanup", default=False,
|
|
help="Delete workdir (only) after successful completion.")
|
|
|
|
|
|
jax.config.parse_flags_with_absl()
|
|
|
|
|
|
def main(argv):
|
|
del argv
|
|
|
|
config = flags.FLAGS.config
|
|
workdir = flags.FLAGS.workdir
|
|
logging.info("Workdir: %s", workdir)
|
|
|
|
logging.info("\u001b[33mHello from process %i holding %i/%i devices and "
|
|
"writing to workdir %s.\u001b[0m", jax.process_index(),
|
|
jax.local_device_count(), jax.device_count(), workdir)
|
|
|
|
|
|
task_module = importlib.import_module(f"big_vision.trainers.{config.task}")
|
|
input_pp_fn = partial(task_module.input_pp, config=config)
|
|
task_loss_fn = partial(task_module.loss_fn, config=config)
|
|
predict_outputs_fn = partial(task_module.predict_outputs, config=config)
|
|
|
|
save_ckpt_path = None
|
|
if workdir:
|
|
gfile.makedirs(workdir)
|
|
save_ckpt_path = os.path.join(workdir, "checkpoint.npz")
|
|
|
|
|
|
pool = multiprocessing.pool.ThreadPool()
|
|
|
|
|
|
for m in config.get("pp_modules",
|
|
["ops_general", "ops_image", "proj.uvim.pp_ops"]):
|
|
importlib.import_module(f"big_vision.pp.{m}")
|
|
|
|
|
|
|
|
|
|
|
|
rng = jax.random.PRNGKey(config.get("seed", 0))
|
|
|
|
|
|
|
|
xid, wid = -1, -1
|
|
fillin = lambda s: s
|
|
def info(s, *a):
|
|
logging.info("\u001b[33mNOTE\u001b[0m: " + s, *a)
|
|
def write_note(note):
|
|
if jax.process_index() == 0:
|
|
info("%s", note)
|
|
|
|
write_note("Initializing...")
|
|
|
|
batch_size = config.input.batch_size
|
|
if batch_size % jax.device_count() != 0:
|
|
raise ValueError(f"Batch size ({batch_size}) must "
|
|
f"be divisible by device number ({jax.device_count()})")
|
|
info("Global batch size %d on %d hosts results in %d local batch size. With "
|
|
"%d dev per host (%d dev total), that's a %d per-device batch size.",
|
|
batch_size, jax.process_count(), batch_size // jax.process_count(),
|
|
jax.local_device_count(), jax.device_count(),
|
|
batch_size // jax.device_count())
|
|
|
|
|
|
mw = u.BigVisionMetricWriter(xid, wid, workdir, config)
|
|
chrono = u.Chrono()
|
|
|
|
write_note("Initializing train dataset...")
|
|
train_data = ds_core.get(**config.input.data)
|
|
train_ds = input_pipeline.make_for_train(
|
|
data=train_data.get_tfdata(ordered=False),
|
|
batch_size=batch_size,
|
|
preprocess_fn=pp_builder.get_preprocess_fn(config.input.get("pp")),
|
|
shuffle_buffer_size=config.input.get("shuffle_buffer_size"),
|
|
cache_raw=config.input.get("cache_raw", False),
|
|
filter_fn=config.input.get("filter_fn"),
|
|
)
|
|
|
|
|
|
n_prefetch = config.get("prefetch_to_device", 1)
|
|
train_iter = input_pipeline.start_input_pipeline(train_ds, n_prefetch)
|
|
ntrain_img = train_data.total_examples
|
|
|
|
def get_steps(name, default=ValueError):
|
|
return u.steps(name, config, ntrain_img, batch_size, default)
|
|
total_steps = get_steps("total")
|
|
|
|
info("Running for %d steps, that means %f epochs",
|
|
total_steps, total_steps * batch_size / ntrain_img)
|
|
|
|
write_note(f"Initializing {config.model_name} model...")
|
|
model_mod = importlib.import_module(f"big_vision.models.{config.model_name}")
|
|
model = model_mod.Model(**config.model)
|
|
|
|
|
|
|
|
|
|
@partial(jax.jit, backend="cpu")
|
|
def init(rng):
|
|
batch = jax.tree_map(
|
|
lambda x: jnp.zeros(x.shape, x.dtype.as_numpy_dtype),
|
|
train_ds.element_spec)
|
|
init_res = flax.core.unfreeze(model.init(rng, **input_pp_fn(batch)))
|
|
params, state = init_res["params"], init_res["state"]
|
|
|
|
|
|
for key in config.model.outputs:
|
|
params[f"head_{key}"]["bias"] = jnp.full_like(
|
|
params[f"head_{key}"]["bias"], config.get("init_head_bias", 0))
|
|
|
|
return params, state
|
|
|
|
rng, rng_init = jax.random.split(rng)
|
|
|
|
rng_init_params, rng_init_state = jax.random.split(rng_init)
|
|
params_cpu, state_cpu = init({"params": rng_init_params,
|
|
"state": rng_init_state})
|
|
|
|
if jax.process_index() == 0:
|
|
num_params = sum(p.size for p in jax.tree_leaves(params_cpu))
|
|
parameter_overview.log_parameter_overview(params_cpu, msg="init params")
|
|
mw.measure("num_params", num_params)
|
|
|
|
write_note(f"Initializing {config.optax_name} optimizer...")
|
|
tx, sched_fns = bv_optax.make(config, params_cpu, sched_kw=dict(
|
|
total_steps=total_steps, batch_size=batch_size, data_size=ntrain_img))
|
|
|
|
|
|
opt_cpu = jax.jit(tx.init, backend="cpu")(params_cpu)
|
|
sched_fns_cpu = [jax.jit(sched_fn, backend="cpu") for sched_fn in sched_fns]
|
|
|
|
@partial(jax.pmap, axis_name="batch", donate_argnums=(0, 1, 2),
|
|
static_broadcasted_argnums=(5,))
|
|
def update_fn(params, opt, state, batch, rng, update_dict=True):
|
|
"""Update step."""
|
|
measurements = {}
|
|
|
|
|
|
rng, rng_model = jax.random.split(rng, 2)
|
|
rng_model_local = jax.random.fold_in(rng_model, jax.lax.axis_index("batch"))
|
|
|
|
def loss_fn(params, state, batch):
|
|
(logits, out), mutated_col = model.apply(
|
|
{"params": params, "state": state},
|
|
**input_pp_fn(batch),
|
|
train=True, update_dict=update_dict,
|
|
rngs={"dropout": rng_model_local, "vqvae": rng_model},
|
|
mutable=["state"])
|
|
btlneck = out["bottleneck"]
|
|
btlneck_q = out["bottleneck_q"]
|
|
|
|
loss_rec, logs = jax.tree_map(jnp.mean, task_loss_fn(logits, batch))
|
|
loss_commitment = jnp.mean(jnp.square(btlneck - SG(btlneck_q)))
|
|
loss = loss_rec + config.get("w_commitment", 0.25) * loss_commitment
|
|
aux = {
|
|
"loss_rec": jax.lax.pmean(loss_rec, axis_name="batch"),
|
|
"loss_commitment": jax.lax.pmean(loss_commitment, axis_name="batch"),
|
|
"codebook_zeros_ratio": out["codebook_zeros_ratio"],
|
|
"codebook_max_ratio": out["codebook_max_ratio"],
|
|
"state": mutated_col["state"],
|
|
**jax.tree_map(partial(jax.lax.pmean, axis_name="batch"), logs),
|
|
}
|
|
return loss, aux
|
|
|
|
(l, aux), grads = jax.value_and_grad(loss_fn, has_aux=True)(
|
|
params, state, batch)
|
|
l, grads = jax.lax.pmean((l, grads), axis_name="batch")
|
|
updates, opt = tx.update(grads, opt, params)
|
|
params = optax.apply_updates(params, updates)
|
|
state = aux.pop("state")
|
|
measurements = {**measurements, **aux}
|
|
|
|
gs = jax.tree_leaves(bv_optax.replace_frozen(config.schedule, grads, 0.))
|
|
measurements["l2_grads"] = jnp.sqrt(sum([jnp.vdot(g, g) for g in gs]))
|
|
ps = jax.tree_leaves(params)
|
|
measurements["l2_params"] = jnp.sqrt(sum([jnp.vdot(p, p) for p in ps]))
|
|
us = jax.tree_leaves(updates)
|
|
measurements["l2_updates"] = jnp.sqrt(sum([jnp.vdot(u, u) for u in us]))
|
|
|
|
return params, opt, state, l, rng, measurements
|
|
|
|
|
|
def validation_fn(params, batch):
|
|
"""Compute per-example metrics."""
|
|
logits, out = model.apply(params, **input_pp_fn(batch))
|
|
_, losses = task_loss_fn(logits, batch)
|
|
btlneck = out["bottleneck"]
|
|
btlneck_q = out["bottleneck_q"]
|
|
losses["loss_commitment"] = jnp.square(btlneck - btlneck_q)
|
|
return jax.tree_map(
|
|
lambda x: jnp.mean(x, axis=tuple(range(1, x.ndim))),
|
|
losses)
|
|
|
|
def predict_fn(params, batch):
|
|
logits, _ = model.apply(params, **input_pp_fn(batch))
|
|
outputs = predict_outputs_fn(logits)
|
|
return outputs
|
|
|
|
|
|
@functools.lru_cache(maxsize=None)
|
|
def evaluators():
|
|
return eval_common.from_config(
|
|
config, {"predict": predict_fn, "validation": validation_fn},
|
|
lambda s: write_note(f"Initializing evaluator: {s}...\n{chrono.note}")
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
resume_ckpt_path = None
|
|
if save_ckpt_path and gfile.exists(save_ckpt_path):
|
|
resume_ckpt_path = save_ckpt_path
|
|
elif config.get("resume"):
|
|
resume_ckpt_path = fillin(config.resume)
|
|
if resume_ckpt_path:
|
|
write_note("Resume training from checkpoint...")
|
|
checkpoint = {
|
|
"params": params_cpu,
|
|
"state": state_cpu,
|
|
"opt": opt_cpu,
|
|
"chrono": chrono.save(),
|
|
}
|
|
checkpoint_tree = jax.tree_structure(checkpoint)
|
|
loaded = u.load_checkpoint(checkpoint_tree, resume_ckpt_path)
|
|
|
|
checkpoint = jax.tree_map(u.recover_dtype, loaded)
|
|
params_cpu = checkpoint["params"]
|
|
state_cpu = checkpoint["state"]
|
|
opt_cpu = checkpoint["opt"]
|
|
chrono.load(checkpoint["chrono"])
|
|
elif config.get("model_init"):
|
|
write_note(f"Initialize model from {config.model_init}...")
|
|
params_cpu, state_cpu = model_mod.load(
|
|
{"params": params_cpu, "state": state_cpu},
|
|
config.model_init, config.model,
|
|
**config.get("model_load", {}))
|
|
if jax.process_index() == 0:
|
|
parameter_overview.log_parameter_overview(
|
|
params_cpu, msg="restored params")
|
|
|
|
write_note("Kicking off misc stuff...")
|
|
first_step = bv_optax.get_count(opt_cpu)
|
|
chrono.inform(first_step, total_steps, batch_size, ntrain_img / batch_size)
|
|
prof = None
|
|
|
|
write_note(f"Replicating...\n{chrono.note}")
|
|
params_repl = flax.jax_utils.replicate(params_cpu)
|
|
opt_repl = flax.jax_utils.replicate(opt_cpu)
|
|
state_repl = flax.jax_utils.replicate(state_cpu)
|
|
|
|
rng, rng_loop = jax.random.split(rng, 2)
|
|
rngs_loop = flax.jax_utils.replicate(rng_loop)
|
|
ckpt_writer = None
|
|
|
|
write_note(f"First step compilations...\n{chrono.note}")
|
|
error = None
|
|
|
|
|
|
|
|
for step, batch in zip(range(first_step + 1, total_steps + 1), train_iter):
|
|
mw.step_start(step)
|
|
|
|
with jax.profiler.StepTraceAnnotation("train_step", step_num=step):
|
|
params_repl, opt_repl, state_repl, loss_value, rngs_loop, measurements = (
|
|
update_fn(
|
|
params_repl,
|
|
opt_repl,
|
|
state_repl,
|
|
batch,
|
|
rngs_loop,
|
|
not config.get("freeze_dict", True)))
|
|
|
|
|
|
if jax.process_index() == 0:
|
|
prof = u.startstop_prof(prof, step, first_step, get_steps("log_training"))
|
|
|
|
|
|
if (u.itstime(step, get_steps("log_training"), total_steps, host=0)
|
|
or chrono.warmup and jax.process_index() == 0):
|
|
for i, sched_fn_cpu in enumerate(sched_fns_cpu):
|
|
mw.measure(f"global_schedule{i if i else ''}", sched_fn_cpu(step - 1))
|
|
l = mw.measure("training_loss", loss_value[0])
|
|
for name, value in measurements.items():
|
|
mw.measure(name, value[0])
|
|
chrono.tick(step, mw.measure, write_note)
|
|
if not np.isfinite(l):
|
|
error = (f"The loss became nan or inf somewhere within steps "
|
|
f"[{step - get_steps('log_training')}, {step}]")
|
|
break
|
|
|
|
|
|
if (save_ckpt_path and
|
|
(u.itstime(step, get_steps("ckpt", None), total_steps, host=0) or
|
|
u.itstime(step, get_steps("keep_ckpt", None), total_steps, host=0))):
|
|
chrono.pause(wait_for=(params_repl, opt_repl, state_repl))
|
|
u.checkpointing_timeout(ckpt_writer, config.get("ckpt_timeout", 1))
|
|
|
|
|
|
|
|
params_cpu, opt_cpu, state_cpu = jax.tree_map(
|
|
lambda x: np.array(x[0]), (params_repl, opt_repl, state_repl))
|
|
|
|
|
|
copy_step = None
|
|
if u.itstime(step, get_steps("keep_ckpt", None), total_steps):
|
|
copy_step = step
|
|
|
|
ckpt = {
|
|
"params": params_cpu,
|
|
"state": state_cpu,
|
|
"opt": opt_cpu,
|
|
"chrono": chrono.save(),
|
|
}
|
|
ckpt_writer = pool.apply_async(
|
|
u.save_checkpoint, (ckpt, save_ckpt_path, copy_step))
|
|
chrono.resume()
|
|
|
|
for (name, evaluator, log_steps, prefix) in evaluators():
|
|
if u.itstime(step, log_steps, total_steps):
|
|
chrono.pause(wait_for=(params_repl, state_repl))
|
|
write_note(f"{name} evaluation...\n{chrono.note}")
|
|
for key, value in evaluator.run(
|
|
{"params": params_repl, "state": state_repl}):
|
|
mw.measure(f"{prefix}{key}", value)
|
|
chrono.resume()
|
|
mw.step_end()
|
|
|
|
|
|
|
|
if jax.process_index() == 0 and prof is not None:
|
|
u.startstop_prof(prof)
|
|
|
|
|
|
if total_steps == 0:
|
|
for (name, evaluator, _, prefix) in evaluators():
|
|
write_note(f"{name} evaluation...\n{chrono.note}")
|
|
for key, value in evaluator.run(
|
|
{"params": params_repl, "state": state_repl}):
|
|
mw.measure(f"{prefix}{key}", value)
|
|
|
|
|
|
if not error:
|
|
write_note(f"Done!\n{chrono.note}")
|
|
else:
|
|
write_note(f"Failed!\n{error}\n{chrono.note}")
|
|
|
|
pool.close()
|
|
pool.join()
|
|
mw.close()
|
|
|
|
|
|
u.sync()
|
|
|
|
|
|
if error is not None:
|
|
raise RuntimeError(error)
|
|
|
|
u.maybe_cleanup_workdir(workdir, flags.FLAGS.cleanup, info)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
app.run(main)
|
|
|