|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Simple vision-text transformer with encoder-decoder architecture.
|
|
|
|
Used abbreviations for dimension annotations:
|
|
B: batch size.
|
|
H: image height.
|
|
W: image width.
|
|
P: number of patches (PH/PW: number of patches in height/width dimensions).
|
|
E: embedding size.
|
|
L: sequence length of text tokens.
|
|
V: vocab size.
|
|
"""
|
|
from typing import Sequence
|
|
from big_vision import utils
|
|
from big_vision.models import common
|
|
from big_vision.models import vit
|
|
import einops
|
|
import flax
|
|
import flax.linen as nn
|
|
import jax.numpy as jnp
|
|
import ml_collections
|
|
import numpy as np
|
|
|
|
|
|
def shift_right(x, axis=1):
|
|
"""Shift to the right on given axis with padding value 0."""
|
|
pad_widths = [(0, 0)] * len(x.shape)
|
|
pad_widths[axis] = (1, 0)
|
|
padded = jnp.pad(x, pad_widths, constant_values=0)
|
|
return padded[:, :-1]
|
|
|
|
|
|
class EncoderDecoderBlock(nn.Module):
|
|
"""Transformer encoder-decoder layer."""
|
|
mlp_dim: int
|
|
num_heads: int
|
|
dropout_rate: float = 0.
|
|
decode: bool = False
|
|
|
|
@nn.compact
|
|
def __call__(self, targets, encoded, decoder_mask=None, deterministic=True):
|
|
"""Applies EncoderDecoder1DBlock module.
|
|
|
|
Args:
|
|
targets: target text embeddings [B, L, E].
|
|
encoded: encoded image patches from encoder [B, P, E].
|
|
decoder_mask: decoder self-attention mask.
|
|
deterministic: bool, deterministic or not (to apply dropout).
|
|
|
|
Returns:
|
|
output after transformer encoder-decoder block [B, L, E].
|
|
"""
|
|
|
|
x = nn.LayerNorm(name="LayerNorm1")(targets)
|
|
x = nn.SelfAttention(
|
|
num_heads=self.num_heads, use_bias=False, broadcast_dropout=False,
|
|
dropout_rate=self.dropout_rate, decode=self.decode, name="SelfAttn")(
|
|
x, decoder_mask, deterministic=deterministic)
|
|
x = nn.Dropout(rate=self.dropout_rate)(x, deterministic=deterministic)
|
|
x = x + targets
|
|
|
|
|
|
y = nn.LayerNorm(name="LayerNorm2")(x)
|
|
y = nn.MultiHeadDotProductAttention(
|
|
num_heads=self.num_heads, use_bias=False, broadcast_dropout=False,
|
|
dropout_rate=self.dropout_rate, name="CrossAttn")(
|
|
y, encoded, deterministic=deterministic)
|
|
y = nn.Dropout(rate=self.dropout_rate)(y, deterministic=deterministic)
|
|
y = y + x
|
|
|
|
|
|
z = nn.LayerNorm(name="LayerNorm3")(y)
|
|
z = vit.MlpBlock(mlp_dim=self.mlp_dim, dropout=self.dropout_rate,
|
|
name="MLP")(z, deterministic=deterministic)
|
|
|
|
return y + z
|
|
|
|
|
|
class Decoder(nn.Module):
|
|
"""Transformer Model Decoder for sequence to sequence translation."""
|
|
emb_dim: int
|
|
mlp_dim: int
|
|
num_heads: int
|
|
num_layers: int
|
|
dropout_rate: float = 0.
|
|
output_vocab_size: int = 32000
|
|
zero_decoder_seq: bool = False
|
|
|
|
@nn.compact
|
|
def __call__(self,
|
|
encoded,
|
|
targets,
|
|
pos_emb,
|
|
decoder_mask=None,
|
|
decode=False,
|
|
deterministic=True,
|
|
max_decode_length=None):
|
|
"""Applies Transformer model on the inputs.
|
|
|
|
Args:
|
|
encoded: encoded image patches from encoder [B, P, E].
|
|
targets: target text tokens [B, L].
|
|
pos_emb: positional embeddings.
|
|
decoder_mask: decoder self-attention mask.
|
|
decode: bool, whether to perform fast autoregressive decoding with cache.
|
|
deterministic: bool, deterministic or not (to apply dropout).
|
|
max_decode_length: optional max length for positional embeddings.
|
|
|
|
Returns:
|
|
output of a transformer decoder [B, L, V].
|
|
"""
|
|
y = targets.astype("int32")
|
|
if not decode:
|
|
y = shift_right(y)
|
|
y = nn.Embed(self.output_vocab_size, self.emb_dim, name="EmbedTargets",
|
|
embedding_init=nn.initializers.normal(stddev=1.0))(y)
|
|
if self.zero_decoder_seq:
|
|
y = jnp.zeros_like(y)
|
|
y = common.AddPositionEmbs(
|
|
decode=decode, name="PosEmbedTargets")(y, pos_emb)
|
|
y = nn.Dropout(rate=self.dropout_rate)(y, deterministic=deterministic)
|
|
|
|
for lyr in range(self.num_layers):
|
|
y = EncoderDecoderBlock(
|
|
num_heads=self.num_heads, mlp_dim=self.mlp_dim,
|
|
dropout_rate=self.dropout_rate, decode=decode,
|
|
name=f"EncDecBlock{lyr}")(y, encoded, decoder_mask=decoder_mask,
|
|
deterministic=deterministic)
|
|
y = nn.LayerNorm(name="LayerNorm")(y)
|
|
logits = nn.Dense(self.output_vocab_size, kernel_init=nn.initializers.zeros,
|
|
name="LogitsDense")(y)
|
|
return logits
|
|
|
|
|
|
class Model(nn.Module):
|
|
"""Transformer Model for sequence to sequence translation."""
|
|
patches: ml_collections.ConfigDict
|
|
|
|
num_heads: int = 8
|
|
num_layers: int = 6
|
|
mlp_dim: int = 2048
|
|
dropout_rate: float = 0.
|
|
|
|
emb_dim: int = 512
|
|
vocab_size: int = 32000
|
|
seq_len: int = 256
|
|
|
|
input_size: Sequence[int] = (256, 256)
|
|
posemb_type: str = "sincos2d"
|
|
zero_decoder_seq: bool = False
|
|
|
|
def setup(self):
|
|
grid_size = np.array(self.input_size) // np.array(self.patches.size)
|
|
self.pos_emb_for_encoder = vit.get_posemb(
|
|
self, self.posemb_type, grid_size, self.emb_dim,
|
|
"pos_embedding_encoder")
|
|
self.pos_emb_for_decoder = vit.get_posemb(
|
|
self, self.posemb_type, (1, self.seq_len), self.emb_dim,
|
|
"pos_embedding_decoder")
|
|
|
|
self.encoder = vit.Encoder(
|
|
depth=self.num_layers,
|
|
mlp_dim=self.mlp_dim,
|
|
num_heads=self.num_heads,
|
|
dropout=self.dropout_rate)
|
|
self.decoder = Decoder(
|
|
num_layers=self.num_layers,
|
|
mlp_dim=self.mlp_dim,
|
|
num_heads=self.num_heads,
|
|
dropout_rate=self.dropout_rate,
|
|
emb_dim=self.emb_dim,
|
|
output_vocab_size=self.vocab_size,
|
|
zero_decoder_seq=self.zero_decoder_seq,
|
|
)
|
|
self.conv = nn.Conv(self.emb_dim, self.patches.size, padding="VALID",
|
|
strides=self.patches.size, name="EmbedPatches")
|
|
|
|
def encode(self, image, train=False):
|
|
"""Encodes input image or embeddings."""
|
|
emb = self.conv(image)
|
|
patch_embeddings = einops.rearrange(emb, "B PH PW E -> B (PH PW) E")
|
|
encoded, _ = self.encoder(
|
|
patch_embeddings + self.pos_emb_for_encoder, deterministic=not train)
|
|
return encoded
|
|
|
|
def decode(self, encoded, targets, decode=False, train=False,
|
|
max_decode_length=None):
|
|
"""Applies Transformer decoder-branch on encoded-input and target.
|
|
|
|
Args:
|
|
encoded: encoded image patches from encoder [B, P, E].
|
|
targets: target text tokens [B, L].
|
|
decode: whether to prepare and use an autoregressive cache.
|
|
train: whether it is training.
|
|
max_decode_length: optional max length for positional embeddings.
|
|
|
|
Returns:
|
|
logits array from transformer decoder [B, L, V].
|
|
"""
|
|
decoder_mask = None if decode else nn.make_causal_mask(targets)
|
|
logits = self.decoder(
|
|
encoded,
|
|
targets,
|
|
pos_emb=self.pos_emb_for_decoder,
|
|
decoder_mask=decoder_mask,
|
|
decode=decode,
|
|
deterministic=not train,
|
|
max_decode_length=max_decode_length)
|
|
return logits
|
|
|
|
def __call__(self, image, text, *, decode=False, train=False):
|
|
"""Applies Transformer model on the inputs.
|
|
|
|
Args:
|
|
image: batch of images [B, H, W, 3].
|
|
text: batch of tokenized texts [B, L].
|
|
decode: whether to prepare and use an autoregressive cache.
|
|
train: whether it is training.
|
|
|
|
Returns:
|
|
logits array from full transformer [B, L, V].
|
|
"""
|
|
encoded = self.encode(image, train=train)
|
|
return self.decode(encoded, text, decode=decode, train=train)
|
|
|
|
|
|
def load(init_params, init_files, model_params=None,
|
|
dont_load=("head/kernel", "head/bias", "cls")):
|
|
"""Loads params from init checkpoint and merges into init_params."""
|
|
del model_params
|
|
if isinstance(init_files, str):
|
|
|
|
ckpt_params = utils.load_params(None, init_files)
|
|
ckpt_params = flax.training.checkpoints.convert_pre_linen(ckpt_params)
|
|
if init_params is not None:
|
|
ckpt_params = common.merge_params(ckpt_params, init_params, dont_load)
|
|
else:
|
|
init_files = {**init_files}
|
|
|
|
enc_init = init_files.pop("encoder", None)
|
|
if enc_init:
|
|
ckpt_params = init_params.copy()
|
|
vit_params = {
|
|
"pos_embedding": ckpt_params["pos_embedding_encoder"],
|
|
"Transformer": ckpt_params["encoder"],
|
|
"embedding": ckpt_params["EmbedPatches"],
|
|
}
|
|
encoder_params = vit.load(
|
|
vit_params, enc_init, model_cfg={},
|
|
dont_load=dont_load)
|
|
ckpt_params["encoder"] = encoder_params["Transformer"]
|
|
ckpt_params["pos_embedding_encoder"] = encoder_params["pos_embedding"]
|
|
ckpt_params["EmbedPatches"] = encoder_params["embedding"]
|
|
else:
|
|
raise ValueError("Only encoder init is supported: {}.".format(init_files))
|
|
|
|
return ckpt_params
|
|
|