|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Decoder-only and encoder-decoder GIVT model.
|
|
|
|
Used abbreviations for dimension annotations:
|
|
B: batch size.
|
|
E: embedding size.
|
|
L: (soft) token sequence length.
|
|
D: soft token dimension.
|
|
P: number of patches (extracted by a ViT encoder in GIVT-based UViM)
|
|
"""
|
|
|
|
import enum
|
|
import itertools
|
|
from typing import Literal, Optional, Sequence, Any, Mapping
|
|
|
|
from absl import logging
|
|
from big_vision import utils
|
|
from big_vision.models import common
|
|
from big_vision.models import vit
|
|
import distrax
|
|
import einops
|
|
import flax.linen as nn
|
|
from flax.linen import partitioning
|
|
import jax
|
|
import jax.numpy as jnp
|
|
import numpy as np
|
|
|
|
|
|
class _SpecialLabel(enum.Enum):
|
|
|
|
MASK = "mask"
|
|
NOMASK = "nomask"
|
|
REPLACE = "replace"
|
|
NOLABEL = "nolabel"
|
|
|
|
|
|
def _random_mask_with_ratios(rng, ratios: jax.Array, seq_len: int):
|
|
"""Generates masks where a fraction of tokens is uncovered.
|
|
|
|
Args:
|
|
rng: RNG.
|
|
ratios: Ratios, must be a 1D matrix of shape (B,). Values must be in
|
|
[0, 1], and indicate at ratios[i] how many of the i-th tokens are
|
|
uncovered (ie. equal to `True`).
|
|
seq_len: How many tokens this mask has to cover.
|
|
|
|
Returns:
|
|
Mask of dtype bool, shape (B, L).
|
|
|
|
Raises:
|
|
ValueError: Incorrect inputs.
|
|
"""
|
|
if ratios.ndim != 1:
|
|
raise ValueError("Ratios must have shape (B,)!")
|
|
ratios = jnp.clip(ratios, 0, 1)
|
|
indices = jnp.arange(seq_len, dtype=jnp.float32)
|
|
ratios = ratios[:, jnp.newaxis] * seq_len
|
|
|
|
mask = (indices < ratios).astype(jnp.bool_)
|
|
|
|
return jax.random.shuffle(rng, mask, axis=-1)
|
|
|
|
|
|
def apply_mask_schedule(ratio: float | jax.Array, method: str) -> jax.Array:
|
|
"""Generate a mask rate by scheduling mask functions R."""
|
|
if method == "cosine":
|
|
mask_ratio = jax.lax.cos(jnp.pi / 2. * ratio)
|
|
elif "pow:" in method:
|
|
exponent = float(method.replace("pow:", ""))
|
|
mask_ratio = 1. - ratio**exponent
|
|
else:
|
|
raise NotImplementedError(method)
|
|
|
|
mask_ratio = jnp.clip(mask_ratio, 1e-6, 1.)
|
|
return mask_ratio
|
|
|
|
|
|
class EncoderDecoderBlock(nn.Module):
|
|
"""Transformer encoder-decoder layer."""
|
|
mlp_dim: int
|
|
num_heads: int
|
|
dropout_rate: float = 0.
|
|
decode: bool = False
|
|
|
|
@nn.compact
|
|
def __call__(
|
|
self,
|
|
targets: jax.Array,
|
|
encoded: jax.Array | None = None,
|
|
decoder_mask: jax.Array | None = None,
|
|
deterministic: bool = True,
|
|
) -> tuple[jax.Array, jax.Array]:
|
|
"""Applies EncoderDecoderBlock module.
|
|
|
|
Args:
|
|
targets: target text embeddings [B, L, D].
|
|
encoded: encoded image patches from encoder [B, P, E].
|
|
decoder_mask: decoder self-attention mask.
|
|
deterministic: bool, deterministic or not (to apply dropout).
|
|
|
|
Returns:
|
|
output after transformer encoder-decoder block [B, L, E].
|
|
"""
|
|
|
|
def wlc(f):
|
|
dim_names = ("act_batch", "act_len", "act_emb")
|
|
return nn.with_logical_constraint(f, dim_names)
|
|
|
|
x = wlc(nn.LayerNorm(name="LayerNorm1", use_bias=False)(targets))
|
|
x = wlc(nn.SelfAttention(
|
|
num_heads=self.num_heads, use_bias=False, broadcast_dropout=False,
|
|
dropout_rate=self.dropout_rate, decode=self.decode, name="SelfAttn")(
|
|
x, decoder_mask, deterministic=deterministic))
|
|
x = wlc(nn.Dropout(rate=self.dropout_rate)(x, deterministic=deterministic))
|
|
x = wlc(x + targets)
|
|
|
|
if encoded is None:
|
|
y = x
|
|
else:
|
|
|
|
y = wlc(nn.LayerNorm(name="LayerNorm2", use_bias=False)(x))
|
|
y = wlc(nn.MultiHeadDotProductAttention(
|
|
num_heads=self.num_heads, use_bias=False, broadcast_dropout=False,
|
|
dropout_rate=self.dropout_rate, name="CrossAttn")(
|
|
y, encoded, deterministic=deterministic))
|
|
y = wlc(
|
|
nn.Dropout(rate=self.dropout_rate)(y, deterministic=deterministic))
|
|
y = wlc(y + x)
|
|
|
|
|
|
z = wlc(nn.LayerNorm(name="LayerNorm3", use_bias=False)(y))
|
|
z = wlc(vit.MlpBlock(mlp_dim=self.mlp_dim, dropout=self.dropout_rate,
|
|
name="MLP")(z, deterministic=deterministic))
|
|
|
|
|
|
out = wlc(y + z)
|
|
return out, out
|
|
|
|
|
|
class Decoder(nn.Module):
|
|
"""Transformer decoder model with optional cross-attention."""
|
|
emb_dim: int
|
|
mlp_dim: int
|
|
num_heads: int
|
|
num_layers: int
|
|
out_dim: int
|
|
seq_len: int
|
|
style: Literal["ar", "masked"]
|
|
dropout_rate: float = 0.
|
|
zero_embedding_init: bool = False
|
|
|
|
scan: bool = False
|
|
remat_policy: str = "nothing_saveable"
|
|
|
|
@nn.compact
|
|
def __call__(
|
|
self,
|
|
targets: jax.Array,
|
|
encoded: jax.Array | None = None,
|
|
decoder_mask: jax.Array | None = None,
|
|
decode: bool = False,
|
|
deterministic: bool = True,
|
|
return_reps: bool = False,
|
|
) -> jax.Array | tuple[jax.Array, Mapping[str, jax.Array]]:
|
|
"""Applies Transformer model on the inputs.
|
|
|
|
Args:
|
|
targets: target text tokens [B, L].
|
|
encoded: encoded sequence from an encoder [B, P, E].
|
|
decoder_mask: decoder self-attention mask.
|
|
decode: bool, whether to perform fast autoregressive decoding with cache.
|
|
deterministic: bool, deterministic or not (to apply dropout).
|
|
return_reps: bool, whether to return intermediate representations.
|
|
|
|
Returns:
|
|
output of a transformer decoder [B, L, out_dim], where out_dim is usually
|
|
a multiple of D.
|
|
"""
|
|
if self.style == "masked" and decode:
|
|
raise ValueError("Cannot run masked model in cached mode!")
|
|
|
|
pos_emb = vit.get_posemb(
|
|
self, "learn", self.seq_len, self.emb_dim,
|
|
"pos_emb")
|
|
|
|
y = common.AddPositionEmbs(
|
|
decode=decode, name="PosEmbedTargets")(targets, pos_emb)
|
|
|
|
out = {}
|
|
if self.scan:
|
|
|
|
|
|
|
|
|
|
|
|
enc_dec_block_remat = nn.remat(
|
|
EncoderDecoderBlock,
|
|
prevent_cse=False,
|
|
static_argnums=(-1, -2),
|
|
policy=getattr(jax.checkpoint_policies, self.remat_policy, None))
|
|
|
|
initializing = self.is_mutable_collection("params")
|
|
param_scan_axis = 1
|
|
params_spec = (param_scan_axis if initializing
|
|
else partitioning.ScanIn(param_scan_axis))
|
|
dec_scanned = nn.scan(enc_dec_block_remat,
|
|
variable_axes={
|
|
"params": params_spec,
|
|
"cache": 0,
|
|
},
|
|
split_rngs={"params": True, "dropout": True},
|
|
in_axes=nn.broadcast,
|
|
length=self.num_layers)
|
|
|
|
y, out = dec_scanned(num_heads=self.num_heads, mlp_dim=self.mlp_dim,
|
|
dropout_rate=self.dropout_rate, decode=decode,
|
|
name="EncDecBlock")(
|
|
y, encoded, decoder_mask, deterministic)
|
|
|
|
|
|
|
|
|
|
|
|
assert out.shape[0] == self.num_layers and (
|
|
decode or out.shape[2] == self.seq_len), (
|
|
(out.shape, self.num_layers, self.seq_len))
|
|
out = {f"block{l}_rep": jnp.mean(out[l], axis=1)
|
|
for l in range(self.num_layers)}
|
|
else:
|
|
for lyr in range(self.num_layers):
|
|
y, _ = EncoderDecoderBlock(
|
|
num_heads=self.num_heads, mlp_dim=self.mlp_dim,
|
|
dropout_rate=self.dropout_rate, decode=decode,
|
|
name=f"EncDecBlock{lyr}")(y, encoded, decoder_mask=decoder_mask,
|
|
deterministic=deterministic)
|
|
out[f"block{lyr}_rep"] = jnp.mean(y, axis=1)
|
|
y = nn.LayerNorm(name="LayerNorm")(y)
|
|
out["pre_logits"] = jnp.mean(y, axis=1)
|
|
|
|
logits = nn.Dense(
|
|
self.out_dim,
|
|
kernel_init=nn.initializers.zeros,
|
|
name="LogitsDense",
|
|
)(y)
|
|
out["logits"] = logits
|
|
if return_reps:
|
|
return logits, out
|
|
return logits
|
|
|
|
|
|
class Model(nn.Module):
|
|
"""GIVT model supporting decoder-only and encoder-decoder applications."""
|
|
num_heads: int = 8
|
|
|
|
num_layers: int = 0
|
|
num_decoder_layers: int = 6
|
|
mlp_dim: int = 2048
|
|
enc_dropout_rate: float = 0.
|
|
dec_dropout_rate: float = 0.
|
|
|
|
emb_dim: int = 512
|
|
num_labels: Optional[int] = 1000
|
|
seq_len: int = 256
|
|
|
|
patches: Sequence[int] = (16, 16)
|
|
input_size: Sequence[int] = (256, 256)
|
|
posemb_type: Literal["learn", "sincos2d"] = "learn"
|
|
zero_decoder_seq: bool = False
|
|
style: Literal["ar", "masked"] = "ar"
|
|
|
|
zero_embedding_init: bool = False
|
|
|
|
num_mixtures: int = 4
|
|
multivariate: bool = False
|
|
out_dim: int = 32
|
|
scale_tol: float = 1e-6
|
|
|
|
|
|
mask_schedule_train: str = "cosine"
|
|
|
|
min_masking_rate_training: float = 0.3
|
|
|
|
|
|
|
|
|
|
|
|
mask_style: str = "replace"
|
|
|
|
|
|
drop_labels_probability: float = 0.0
|
|
|
|
fix_square_plus: bool = False
|
|
|
|
|
|
|
|
per_channel_mixtures: bool = True
|
|
|
|
scan: bool = False
|
|
remat_policy: str = "nothing_saveable"
|
|
|
|
@property
|
|
def has_encoder(self) -> bool:
|
|
return self.num_layers > 0
|
|
|
|
@property
|
|
def num_logits(self) -> int:
|
|
if self.multivariate:
|
|
assert self.num_mixtures == 1
|
|
|
|
|
|
return round(self.out_dim ** 2) + self.out_dim
|
|
|
|
elif self.per_channel_mixtures:
|
|
|
|
|
|
|
|
return 3 * self.num_mixtures * self.out_dim
|
|
|
|
else:
|
|
|
|
return self.num_mixtures + 2 * self.num_mixtures * self.out_dim
|
|
|
|
def setup(self) -> None:
|
|
assert self.posemb_type == "learn"
|
|
assert self.num_mixtures > 0
|
|
|
|
if self.multivariate and self.num_mixtures != 1:
|
|
raise ValueError("Cannot do multivariate GMM!")
|
|
|
|
if self.num_layers > 0:
|
|
grid_size = np.array(self.input_size) // np.array(self.patches)
|
|
|
|
self.pos_emb_for_encoder = vit.get_posemb(
|
|
self, self.posemb_type, grid_size, self.emb_dim,
|
|
"pos_embedding_encoder")
|
|
|
|
self.conv = nn.Conv(self.emb_dim, self.patches, padding="VALID",
|
|
strides=self.patches, name="EmbedPatches")
|
|
|
|
self.encoder = vit.Encoder(
|
|
depth=self.num_layers,
|
|
mlp_dim=self.mlp_dim,
|
|
num_heads=self.num_heads,
|
|
dropout=self.enc_dropout_rate,
|
|
scan=self.scan,
|
|
remat_policy=self.remat_policy,)
|
|
else:
|
|
self.encoder = None
|
|
|
|
|
|
next_label = itertools.count(self.num_labels or 0)
|
|
special_labels = {}
|
|
|
|
if self.style == "ar":
|
|
pass
|
|
elif self.style == "masked":
|
|
if self.mask_style == "replace":
|
|
special_labels = {_SpecialLabel.MASK: next(next_label)}
|
|
elif self.mask_style == "concat":
|
|
special_labels = {
|
|
_SpecialLabel.MASK: next(next_label),
|
|
_SpecialLabel.NOMASK: next(next_label),
|
|
_SpecialLabel.REPLACE: next(next_label),
|
|
}
|
|
else:
|
|
raise NotImplementedError(self.mask_style)
|
|
else:
|
|
raise NotImplementedError(self.style)
|
|
|
|
if self.drop_labels_probability > 0:
|
|
special_labels[_SpecialLabel.NOLABEL] = next(next_label)
|
|
|
|
self.special_labels = special_labels
|
|
lookup_size = (self.num_labels or 1) + len(self.special_labels)
|
|
|
|
self.labels_emb = nn.Embed(
|
|
lookup_size,
|
|
self.emb_dim,
|
|
name="EmbedLabels",
|
|
embedding_init=nn.initializers.zeros
|
|
if self.zero_embedding_init
|
|
else nn.initializers.normal(stddev=1.0),
|
|
)
|
|
|
|
self.targets_emb = nn.Dense(self.emb_dim, name="EmbedTargets")
|
|
|
|
self.decoder = Decoder(
|
|
num_layers=self.num_decoder_layers or self.num_layers,
|
|
mlp_dim=self.mlp_dim,
|
|
num_heads=self.num_heads,
|
|
out_dim=self.num_logits,
|
|
|
|
seq_len=self.seq_len + int(self.style == "masked"),
|
|
dropout_rate=self.dec_dropout_rate,
|
|
emb_dim=self.emb_dim,
|
|
zero_embedding_init=self.zero_embedding_init,
|
|
style=self.style,
|
|
scan=self.scan,
|
|
remat_policy=self.remat_policy,
|
|
)
|
|
|
|
def encode(self, image: jax.Array, train: bool = False) -> jax.Array:
|
|
"""Encodes input image or embeddings."""
|
|
emb = self.conv(image)
|
|
patch_embeddings = einops.rearrange(emb, "B PH PW E -> B (PH PW) E")
|
|
encoded, _ = self.encoder(
|
|
patch_embeddings + self.pos_emb_for_encoder, deterministic=not train)
|
|
return encoded
|
|
|
|
def embed_labels(
|
|
self,
|
|
labels: jax.Array | None = None,
|
|
batch_size: int | None = None,
|
|
) -> jax.Array:
|
|
if labels is not None:
|
|
|
|
return self.labels_emb(labels)[:, None, :]
|
|
|
|
assert ((self.num_labels == 1 or self.num_labels is None)
|
|
and batch_size is not None)
|
|
|
|
return self.labels_emb(jnp.zeros((batch_size,), jnp.int32))[:, None, :]
|
|
|
|
def prefill(
|
|
self, labels=None, batch_size=None, encoded=None, drop_labels=None
|
|
):
|
|
labels = self._drop_labels(drop_labels, labels)
|
|
labels_for_prefill = self.embed_labels(labels=labels, batch_size=batch_size)
|
|
return self.decoder(
|
|
labels_for_prefill,
|
|
encoded=encoded,
|
|
decode=True)
|
|
|
|
def _decode_ar(
|
|
self,
|
|
targets: jax.Array,
|
|
labels: jax.Array | None = None,
|
|
encoded: jax.Array | None = None,
|
|
decode: bool = False,
|
|
train: bool = False,
|
|
) -> tuple[jax.Array, Mapping[str, jax.Array]]:
|
|
"""Autoregressive decoding."""
|
|
targets_embedded = self.targets_emb(targets)
|
|
|
|
if decode:
|
|
decoder_mask = None
|
|
else:
|
|
decoder_mask = nn.make_causal_mask(targets[:, :, 0])
|
|
b = targets.shape[0]
|
|
labels_embedded = self.embed_labels(labels, b)
|
|
assert labels_embedded.shape == (b, 1, self.emb_dim), (
|
|
labels_embedded.shape, (b, 1, self.emb_dim))
|
|
targets_embedded = jnp.concatenate(
|
|
[labels_embedded, targets_embedded[:, : -1]], axis=1)
|
|
|
|
logits, out = self.decoder(
|
|
targets_embedded,
|
|
encoded=encoded,
|
|
decoder_mask=decoder_mask,
|
|
decode=decode,
|
|
deterministic=not train,
|
|
return_reps=True)
|
|
|
|
return logits, out
|
|
|
|
def _get_special_label(self, size, label: _SpecialLabel):
|
|
return self.labels_emb(
|
|
jnp.full(size, self.special_labels[label], jnp.int32)
|
|
)
|
|
|
|
def _decode_masked(
|
|
self,
|
|
targets,
|
|
input_mask,
|
|
labels=None,
|
|
encoded=None,
|
|
train=False,
|
|
):
|
|
"""Masked decoding."""
|
|
b, s, _ = targets.shape
|
|
assert input_mask.shape == (b, s)
|
|
|
|
if self.mask_style == "replace":
|
|
targets_embedded = jnp.where(
|
|
input_mask[:, :, None],
|
|
self._get_special_label((b, s), _SpecialLabel.MASK),
|
|
self.targets_emb(targets),
|
|
)
|
|
elif self.mask_style == "concat":
|
|
masks = jnp.where(
|
|
input_mask[:, :, None],
|
|
self._get_special_label((b, s), _SpecialLabel.MASK),
|
|
self._get_special_label((b, s), _SpecialLabel.NOMASK),
|
|
)
|
|
embedded_targets = self.targets_emb(targets)
|
|
targets_embedded = jnp.where(
|
|
input_mask[:, :, None],
|
|
self._get_special_label((b, s), _SpecialLabel.REPLACE),
|
|
embedded_targets,
|
|
)
|
|
|
|
targets_embedded = jnp.concatenate(
|
|
[masks[..., ::2], targets_embedded[..., ::2]], axis=-1
|
|
)
|
|
else:
|
|
raise ValueError(self.mask_style)
|
|
|
|
labels_embedded = self.embed_labels(labels, b)
|
|
assert labels_embedded.shape == (b, 1, self.emb_dim)
|
|
|
|
|
|
targets_embedded = jnp.concatenate(
|
|
[labels_embedded, targets_embedded], axis=1)
|
|
|
|
logits = self.decoder(
|
|
targets_embedded,
|
|
encoded=encoded,
|
|
decoder_mask=None,
|
|
decode=False,
|
|
deterministic=not train)
|
|
|
|
logits = logits[:, 1:, ...]
|
|
assert logits.shape[:2] == (b, s)
|
|
return logits
|
|
|
|
def _drop_labels(self, drop_labels_mask, labels):
|
|
if labels is None:
|
|
return None
|
|
if self.drop_labels_probability >= 0.999:
|
|
logging.warning("Dropping all labels...")
|
|
return jnp.full_like(labels, self.special_labels[_SpecialLabel.NOLABEL])
|
|
if drop_labels_mask is None:
|
|
return labels
|
|
assert _SpecialLabel.NOLABEL in self.special_labels
|
|
nolabel = jnp.full_like(
|
|
labels, self.special_labels[_SpecialLabel.NOLABEL]
|
|
)
|
|
return jnp.where(drop_labels_mask, nolabel, labels)
|
|
|
|
def decode(
|
|
self,
|
|
targets: jax.Array,
|
|
labels: jax.Array | None = None,
|
|
encoded: jax.Array | None = None,
|
|
decode: bool = False,
|
|
train: bool = False,
|
|
max_decode_length: int | None = None,
|
|
input_mask: jax.Array | None = None,
|
|
drop_labels: jax.Array | None = None,
|
|
return_reps: bool = False,
|
|
) -> jax.Array | tuple[jax.Array, Mapping[str, jax.Array]]:
|
|
"""Applies Transformer decoder-branch on encoded-input and target.
|
|
|
|
Args:
|
|
targets: target text tokens [B, L, out_dim].
|
|
labels: optional class labes, [B].
|
|
encoded: encoded image patches from encoder [B, P, E].
|
|
decode: whether to prepare and use an autoregressive cache.
|
|
train: whether it is training.
|
|
max_decode_length: optional max length for positional embeddings.
|
|
input_mask: If given, mask input. Required for style=="masked".
|
|
Shape [B, L], bool tensor. True means the token will be removed
|
|
from the input.
|
|
drop_labels: Drop labels at corresponding locations [B].
|
|
return_reps: whether to return intermediate representations.
|
|
|
|
Returns:
|
|
logits array from transformer decoder [B, L, 3 * num_mixtures * out_dim].
|
|
"""
|
|
del max_decode_length
|
|
labels = self._drop_labels(drop_labels, labels)
|
|
if self.style == "ar":
|
|
logits, out = self._decode_ar(
|
|
targets, labels, encoded, decode, train)
|
|
if return_reps:
|
|
return logits, out
|
|
return logits
|
|
elif self.style == "masked":
|
|
assert not decode
|
|
assert input_mask is not None
|
|
assert not return_reps
|
|
return self._decode_masked(targets, input_mask, labels, encoded, train)
|
|
else:
|
|
raise NotImplementedError(self.style)
|
|
|
|
def _square_plus(self, x):
|
|
|
|
if self.fix_square_plus:
|
|
return (x + jnp.sqrt(jnp.square(x) + 4)) / 2
|
|
else:
|
|
return x + jnp.sqrt(jnp.square(x) + 4) / 2
|
|
|
|
def get_pdf(
|
|
self,
|
|
logits: jax.Array,
|
|
temperature_scales: float | None = None,
|
|
temperature_probs: float | None = None,
|
|
) -> distrax.Distribution:
|
|
assert logits.shape[-1] == self.num_logits
|
|
if self.multivariate:
|
|
scales = logits[..., :self.out_dim ** 2]
|
|
locs = logits[..., self.out_dim ** 2:]
|
|
assert locs.shape[-1] == self.out_dim
|
|
scales = self._square_plus(scales)
|
|
|
|
*leading, _ = scales.shape
|
|
scales = scales.reshape(*leading, self.out_dim, self.out_dim)
|
|
|
|
diag_scale_tol = jnp.eye(self.out_dim) * self.scale_tol
|
|
scales = jnp.maximum(scales, diag_scale_tol)
|
|
if (t := temperature_scales) is not None:
|
|
scales = scales * t
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return distrax.MultivariateNormalTri(locs, scales)
|
|
|
|
elif self.per_channel_mixtures:
|
|
|
|
logits = jnp.reshape(logits, logits.shape[: -1] + (-1, self.num_mixtures))
|
|
|
|
probs, locs, scales = jnp.split(logits, 3, axis=-2)
|
|
if (t := temperature_probs) is not None:
|
|
probs = probs * t
|
|
|
|
|
|
probs = nn.softmax(probs)
|
|
scales = self._square_plus(scales)
|
|
|
|
scales = jnp.maximum(scales, self.scale_tol)
|
|
if (t := temperature_scales) is not None:
|
|
scales = scales * t
|
|
|
|
|
|
|
|
|
|
return distrax.MixtureSameFamily(
|
|
mixture_distribution=distrax.Categorical(probs=probs),
|
|
components_distribution=distrax.Normal(loc=locs, scale=scales),
|
|
)
|
|
else:
|
|
*shape, num_logits = logits.shape
|
|
assert num_logits == self.num_logits, (num_logits, self.num_logits)
|
|
prob_logits, other_logits = (
|
|
logits[..., : self.num_mixtures],
|
|
logits[..., self.num_mixtures :],
|
|
)
|
|
if (t := temperature_probs) is not None:
|
|
prob_logits = prob_logits * t
|
|
other_logits = jnp.reshape(
|
|
other_logits, (*shape, self.num_mixtures, 2, self.out_dim)
|
|
)
|
|
locs = other_logits[..., 0, :]
|
|
scales = self._square_plus(other_logits[..., 1, :])
|
|
|
|
scales = jnp.maximum(scales, self.scale_tol)
|
|
if (t := temperature_scales) is not None:
|
|
scales = scales * t
|
|
|
|
|
|
|
|
assert prob_logits.ndim == locs.ndim - 1, (prob_logits.shape, locs.shape)
|
|
assert locs.shape == scales.shape, (locs.shape, scales.shape)
|
|
|
|
|
|
|
|
|
|
|
|
return distrax.MixtureSameFamily(
|
|
mixture_distribution=distrax.Categorical(logits=prob_logits),
|
|
components_distribution=distrax.MultivariateNormalDiag(
|
|
loc=locs, scale_diag=scales
|
|
),
|
|
)
|
|
|
|
def __call__(
|
|
self,
|
|
sequence: jax.Array,
|
|
labels: jax.Array | None = None,
|
|
*,
|
|
image: jax.Array | None = None,
|
|
decode: bool = False,
|
|
input_mask: jax.Array | None = None,
|
|
drop_labels: jax.Array | None = None,
|
|
train: bool = False,
|
|
) -> tuple[jax.Array, distrax.Distribution]:
|
|
"""Applies Transformer model on the inputs.
|
|
|
|
Args:
|
|
sequence: batch of sequences [B, L].
|
|
labels: class labels for class conditional generation [B].
|
|
image: batch of images [B, H, W, 3].
|
|
decode: whether to prepare and use an autoregressive cache.
|
|
input_mask: If given, mask input. Required for style=="masked" [B, L].
|
|
drop_labels: If given, drop labels of the corresponding batches [B].
|
|
train: whether it is training.
|
|
|
|
Returns:
|
|
logits array from full transformer [B, L, out_dim].
|
|
"""
|
|
if self.style == "masked" and input_mask is None:
|
|
raise ValueError("Cannot run masked model without input mask!")
|
|
|
|
if self.encoder is not None:
|
|
assert image is not None
|
|
encoded = self.encode(image, train=train)
|
|
else:
|
|
assert image is None
|
|
encoded = None
|
|
|
|
logits = self.decode(sequence, labels=labels, encoded=encoded,
|
|
decode=decode, input_mask=input_mask, train=train)
|
|
pdf = self.get_pdf(logits)
|
|
return logits, pdf
|
|
|
|
def get_input_mask_training(
|
|
self,
|
|
rng: jax.Array,
|
|
shape: tuple[int, int],
|
|
) -> jax.Array | None:
|
|
"""Creates a random maask of shape (B, L) for training masked models."""
|
|
if self.style == "ar":
|
|
return None
|
|
b, s = shape
|
|
|
|
keep = jax.random.uniform(
|
|
rng, shape=(b,), maxval=1.0 - self.min_masking_rate_training
|
|
)
|
|
mask_ratio = apply_mask_schedule(keep, self.mask_schedule_train)
|
|
return _random_mask_with_ratios(rng, ratios=mask_ratio, seq_len=s)
|
|
|
|
def get_input_mask_teacher_forced(
|
|
self,
|
|
shape: tuple[int, int],
|
|
) -> jax.Array | None:
|
|
"""Creates a random maask of shape (B, L) for training masked models."""
|
|
if self.style == "ar":
|
|
return None
|
|
return jnp.zeros(shape, dtype=jnp.bool_)
|
|
|
|
def get_drop_labels(
|
|
self,
|
|
rng: jax.Array,
|
|
batch_size: int,
|
|
) -> jax.Array | None:
|
|
if (p := self.drop_labels_probability) > 0:
|
|
return jax.random.uniform(rng, shape=(batch_size,)) <= p
|
|
else:
|
|
return None
|
|
|
|
|
|
def load(
|
|
init_params: Any,
|
|
init_files: str | Mapping[str, str],
|
|
model_params: Any = None,
|
|
dont_load: Sequence[str] = (),
|
|
resample_encoder_posemb: bool = False,
|
|
trim_decoder_posemb: bool = False,
|
|
) -> Any:
|
|
"""Loads params from init checkpoint and merges into init_params."""
|
|
del model_params
|
|
if isinstance(init_files, str):
|
|
ckpt_params = utils.load_params(init_files)
|
|
ckpt_params = common.merge_params(ckpt_params, init_params, dont_load)
|
|
|
|
if resample_encoder_posemb:
|
|
if init_params and "pos_embedding_encoder" in init_params:
|
|
ckpt_params["pos_embedding_encoder"] = vit.resample_posemb(
|
|
old=ckpt_params["pos_embedding_encoder"],
|
|
new=init_params["pos_embedding_encoder"])
|
|
|
|
if trim_decoder_posemb:
|
|
if init_params and "pos_embedding_decoder" in init_params:
|
|
ckpt_params["pos_embedding_decoder"] = (
|
|
ckpt_params["pos_embedding_decoder"][
|
|
:, :init_params["pos_embedding_decoder"].shape[1], :])
|
|
|
|
else:
|
|
init_files = {**init_files}
|
|
|
|
enc_init = init_files.pop("encoder", None)
|
|
if enc_init:
|
|
ckpt_params = init_params.copy()
|
|
vit_params = {
|
|
"pos_embedding": ckpt_params["pos_embedding_encoder"],
|
|
"Transformer": ckpt_params["encoder"],
|
|
"embedding": ckpt_params["EmbedPatches"],
|
|
}
|
|
encoder_params = vit.load(
|
|
vit_params, enc_init, model_cfg={},
|
|
dont_load=dont_load)
|
|
ckpt_params["encoder"] = encoder_params["Transformer"]
|
|
ckpt_params["pos_embedding_encoder"] = encoder_params["pos_embedding"]
|
|
ckpt_params["EmbedPatches"] = encoder_params["embedding"]
|
|
else:
|
|
raise ValueError("Only encoder init is supported: {}.".format(init_files))
|
|
|
|
return ckpt_params
|
|
|