|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Evaluator that save inputs and outputs of prediction functions."""
|
|
import functools
|
|
|
|
from absl import flags
|
|
from absl import logging
|
|
|
|
from big_vision import input_pipeline
|
|
from big_vision import optax as bv_optax
|
|
from big_vision import utils
|
|
from big_vision.datasets import core as ds_core
|
|
from big_vision.pp import builder as pp_builder
|
|
|
|
import jax
|
|
import numpy as np
|
|
|
|
|
|
|
|
API = 'jit'
|
|
|
|
|
|
|
|
def _run_predict_fn(predict_fn, train_state, batch):
|
|
"""Run predict_fn and gather all outputs on all devices."""
|
|
y = predict_fn(train_state, batch)
|
|
return {'inputs': batch, 'outputs': y}
|
|
|
|
|
|
class Evaluator:
|
|
"""Evaluator that saves the inputs and outputs of a prediction function.
|
|
|
|
Example configuration:
|
|
|
|
```
|
|
config.evals.save_pred = {
|
|
'type': 'save',
|
|
'pred': 'inference',
|
|
'outfile': '{workdir}/inference-{step:09d}.npz',
|
|
'data': ..., 'pp_fn': ..., 'log_steps': ...,
|
|
}
|
|
```
|
|
|
|
Results can then be easily inspected in a notebook such as:
|
|
|
|
```
|
|
results = utils.load_checkpoint("<full_path_to_outfile>")
|
|
inputs, outputs = (results["inputs"], results["outputs"])
|
|
```
|
|
"""
|
|
|
|
def __init__(self, predict_fn, data, pp_fn, batch_size, outfile,
|
|
cache_final=True, cache_raw=False, prefetch=1, *, devices):
|
|
replicate = jax.sharding.NamedSharding(
|
|
jax.sharding.Mesh(devices, ('devices',)),
|
|
jax.sharding.PartitionSpec()
|
|
)
|
|
self.predict_fn = functools.partial(
|
|
jax.jit(_run_predict_fn, static_argnums=0, out_shardings=replicate),
|
|
predict_fn,
|
|
)
|
|
|
|
data = ds_core.get(**data)
|
|
self.dataset, self.steps = input_pipeline.make_for_inference(
|
|
data.get_tfdata(ordered=True),
|
|
batch_size=batch_size,
|
|
num_ex_per_process=data.num_examples_per_process(),
|
|
preprocess_fn=pp_builder.get_preprocess_fn(pp_fn),
|
|
cache_final=cache_final,
|
|
cache_raw=cache_raw,
|
|
)
|
|
self.data_iter = input_pipeline.start_global(
|
|
self.dataset, devices, prefetch
|
|
)
|
|
|
|
self.outfile = outfile
|
|
|
|
def run(self, train_state):
|
|
"""Compute all predictions, gather in main host and save in outfile."""
|
|
step = jax.device_get(bv_optax.get_count(train_state['opt'], jittable=True))
|
|
outfile = self.outfile.format(workdir=flags.FLAGS.workdir, step=step)
|
|
|
|
count = 0
|
|
outputs = []
|
|
for _, batch in zip(range(self.steps), self.data_iter):
|
|
out = self.predict_fn(train_state, batch)
|
|
if jax.process_index():
|
|
continue
|
|
|
|
out = jax.device_get(out)
|
|
mask = out['inputs']['_mask']
|
|
out = jax.tree.map(lambda x: x[mask == 1], out)
|
|
count += mask.shape[0]
|
|
out['inputs'].pop('_mask')
|
|
outputs.append(out)
|
|
|
|
logging.log_every_n_seconds(
|
|
logging.INFO, 'Processed %i examples so far.', 60,
|
|
count)
|
|
|
|
if jax.process_index():
|
|
return
|
|
|
|
logging.info('Saving %d examples in %s', count, outfile)
|
|
outputs = jax.tree.map(lambda *x: np.concatenate(x, axis=0), *outputs)
|
|
utils.save_checkpoint(outputs, outfile, compressed=True)
|
|
return
|
|
|
|
yield None
|
|
|