|
from typing import Dict, List, Any |
|
|
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
|
|
model_name = "all-MiniLM-L6-v2" |
|
|
|
self.model = SentenceTransformer( |
|
model_name, |
|
backend="onnx", |
|
model_kwargs={ |
|
"file_name": "model_O3.onnx", |
|
"provider": "CUDAExecutionProvider", |
|
} |
|
) |
|
|
|
|
|
|
|
def __call__(self, data: Any) -> List[List[Dict[str, float]]]: |
|
""" |
|
Args: |
|
data (:obj:): |
|
includes the input data and the parameters for the inference. |
|
Return: |
|
A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing : |
|
- "label": A string representing what the label/class is. There can be multiple labels. |
|
- "score": A score between 0 and 1 describing how confident the model is for this label/class. |
|
""" |
|
inputs = data.pop("inputs", data) |
|
|
|
prediction = self.model.encode(inputs) |
|
|
|
return prediction.tolist() |