nbroad HF staff commited on
Commit
4a70679
1 Parent(s): cde95ed

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -26
README.md CHANGED
@@ -19,38 +19,45 @@ model-index:
19
  metrics:
20
  - name: Macro F1
21
  type: f1
22
- value: 0.666486375029903
23
- - name: Micro F1
24
- type: f1
25
- value: 0.7939983779399836
26
- - name: False F1
27
- type: f1
28
- value: 0.787128712871287
29
- - name: Mixture F1
30
- type: f1
31
- value: 0.5117493472584855
32
- - name: True F1
33
- type: f1
34
- value: 0.911371237458194
35
- - name: Unproven F1
36
- type: f1
37
- value: 0.4556962025316456
38
  ---
39
 
40
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
- should probably proofread and complete it, then remove this comment. -->
42
 
43
  # bigbird-base-health-fact
44
 
45
  This model is a fine-tuned version of [google/bigbird-roberta-base](https://huggingface.co/google/bigbird-roberta-base) on the health_fact dataset.
46
- It achieves the following results on the evaluation set:
47
- - Loss: 0.5864
48
- - Micro F1: 0.8130
49
- - Macro F1: 0.6874
50
- - False F1: 0.8114
51
- - Mixture F1: 0.4557
52
- - True F1: 0.9154
53
- - Unproven F1: 0.5672
 
 
 
 
 
 
 
 
54
 
55
  The metrics in the eval results on the right-side are for the TEST set. The above results are for the VALIDATION set.
56
 
 
19
  metrics:
20
  - name: Macro F1
21
  type: f1
22
+ value: 0.6694031411935434
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.7948094079480941
26
+ - name: False Accuracy
27
+ type: accuracy
28
+ value: 0.8092783505154639
29
+ - name: Mixture Accuracy
30
+ type: accuracy
31
+ value: 0.4975124378109453
32
+ - name: True Accuracy
33
+ type: accuracy
34
+ value: 0.9148580968280468
35
+ - name: Unproven Accuracy
36
+ type: accuracy
37
+ value: 0.4
38
  ---
39
 
40
+
 
41
 
42
  # bigbird-base-health-fact
43
 
44
  This model is a fine-tuned version of [google/bigbird-roberta-base](https://huggingface.co/google/bigbird-roberta-base) on the health_fact dataset.
45
+ It achieves the following results on the VALIDATION set:
46
+ - Overall Accuracy: 0.8228995057660626
47
+ - Macro F1: 0.6979224830442152
48
+ - False Accuracy: 0.8289473684210527
49
+ - Mixture Accuracy: 0.47560975609756095
50
+ - True Accuracy: 0.9332273449920508
51
+ - Unproven Accuracy: 0.4634146341463415
52
+
53
+ It achieves the following results on the TEST set:
54
+
55
+ - Overall Accuracy: 0.7948094079480941
56
+ - Macro F1: 0.6694031411935434
57
+ - Mixture Accuracy: 0.4975124378109453
58
+ - False Accuracy: 0.8092783505154639
59
+ - True Accuracy: 0.9148580968280468
60
+ - Unproven Accuracy: 0.4
61
 
62
  The metrics in the eval results on the right-side are for the TEST set. The above results are for the VALIDATION set.
63