Upload T5ForConditionalGeneration
Browse files- README.md +44 -0
- adapter_config.json +24 -0
- head_config.json +14 -0
- pytorch_adapter.bin +3 -0
- pytorch_model_head.bin +3 -0
README.md
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- adapterhub:self-explanations
|
4 |
+
- t5
|
5 |
+
- adapter-transformers
|
6 |
+
datasets:
|
7 |
+
- self-explanations
|
8 |
+
---
|
9 |
+
|
10 |
+
# Adapter `nbogdan/flant5-base-0ex-bridging-1epochs` for google/flan-t5-base
|
11 |
+
|
12 |
+
An [adapter](https://adapterhub.ml) for the `google/flan-t5-base` model that was trained on the [self-explanations](https://adapterhub.ml/explore/self-explanations/) dataset.
|
13 |
+
|
14 |
+
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
|
15 |
+
|
16 |
+
## Usage
|
17 |
+
|
18 |
+
First, install `adapter-transformers`:
|
19 |
+
|
20 |
+
```
|
21 |
+
pip install -U adapter-transformers
|
22 |
+
```
|
23 |
+
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
|
24 |
+
|
25 |
+
Now, the adapter can be loaded and activated like this:
|
26 |
+
|
27 |
+
```python
|
28 |
+
from transformers import AutoAdapterModel
|
29 |
+
|
30 |
+
model = AutoAdapterModel.from_pretrained("google/flan-t5-base")
|
31 |
+
adapter_name = model.load_adapter("nbogdan/flant5-base-0ex-bridging-1epochs", source="hf", set_active=True)
|
32 |
+
```
|
33 |
+
|
34 |
+
## Architecture & Training
|
35 |
+
|
36 |
+
<!-- Add some description here -->
|
37 |
+
|
38 |
+
## Evaluation results
|
39 |
+
|
40 |
+
<!-- Add some description here -->
|
41 |
+
|
42 |
+
## Citation
|
43 |
+
|
44 |
+
<!-- Add some description here -->
|
adapter_config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"config": {
|
3 |
+
"alpha": 16,
|
4 |
+
"architecture": "lora",
|
5 |
+
"attn_matrices": [
|
6 |
+
"q",
|
7 |
+
"v"
|
8 |
+
],
|
9 |
+
"composition_mode": "add",
|
10 |
+
"dropout": 0.0,
|
11 |
+
"init_weights": "lora",
|
12 |
+
"intermediate_lora": true,
|
13 |
+
"output_lora": true,
|
14 |
+
"r": 8,
|
15 |
+
"selfattn_lora": true,
|
16 |
+
"use_gating": false
|
17 |
+
},
|
18 |
+
"hidden_size": 768,
|
19 |
+
"model_class": "T5ForConditionalGeneration",
|
20 |
+
"model_name": "google/flan-t5-base",
|
21 |
+
"model_type": "t5",
|
22 |
+
"name": "flant5-base-0ex-bridging-1epochs",
|
23 |
+
"version": "3.2.1"
|
24 |
+
}
|
head_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"config": null,
|
3 |
+
"hidden_size": 768,
|
4 |
+
"label2id": {
|
5 |
+
"LABEL_0": 0,
|
6 |
+
"LABEL_1": 1
|
7 |
+
},
|
8 |
+
"model_class": "T5ForConditionalGeneration",
|
9 |
+
"model_name": "google/flan-t5-base",
|
10 |
+
"model_type": "t5",
|
11 |
+
"name": null,
|
12 |
+
"num_labels": 2,
|
13 |
+
"version": "3.2.1"
|
14 |
+
}
|
pytorch_adapter.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d4949e2bdd141d6124f9c0a7716e3d279c1ceb3a742ac502c9d5b9c9302c88ef
|
3 |
+
size 7956785
|
pytorch_model_head.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:297b02dbecb01de3cb399cb890fec70650d3992367fcae4aad6cfdb725bd5538
|
3 |
+
size 98698060
|