sxyao commited on
Commit
5571c66
1 Parent(s): b483277

bugfix in loading and data processing

Browse files
config.json CHANGED
@@ -34,7 +34,7 @@
34
  "rope_theta": 500000.0,
35
  "tie_word_embeddings": true,
36
  "torch_dtype": "float32",
37
- "transformers_version": "4.47.1",
38
  "use_cache": true,
39
  "vocab_size": 128256
40
  }
 
34
  "rope_theta": 500000.0,
35
  "tie_word_embeddings": true,
36
  "torch_dtype": "float32",
37
+ "transformers_version": "4.45.2",
38
  "use_cache": true,
39
  "vocab_size": 128256
40
  }
generation_config.json CHANGED
@@ -8,5 +8,5 @@
8
  ],
9
  "temperature": 0.6,
10
  "top_p": 0.9,
11
- "transformers_version": "4.47.1"
12
  }
 
8
  ],
9
  "temperature": 0.6,
10
  "top_p": 0.9,
11
+ "transformers_version": "4.45.2"
12
  }
model-00001-of-00002.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ab6434d68ed9cc2d87d40a49848fa8c16b034a495b1fc85fdb58e2fdeb7f853f
3
  size 4943274328
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c1adb90bd346a202a4f08bdabc78a07e0fa3387b00d6f4da5d9db0dc33e74f2
3
  size 4943274328
model-00002-of-00002.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f643977efaea5af706c1973280f6d01c97b346a3a6118f739c3546d1fbcf62d0
3
  size 1050673280
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0724c4783767d7bde60bfc141142ac5a6b68a7ce9b2aca6f3d91e1e5fa06e3e
3
  size 1050673280
model.safetensors.index.json CHANGED
@@ -3,7 +3,6 @@
3
  "total_size": 5993930752
4
  },
5
  "weight_map": {
6
- "lm_head.weight": "model-00002-of-00002.safetensors",
7
  "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
  "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
  "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
 
3
  "total_size": 5993930752
4
  },
5
  "weight_map": {
 
6
  "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
7
  "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
8
  "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
tokenizer_config.json CHANGED
@@ -2053,7 +2053,6 @@
2053
  "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- if strftime_now is defined %}\n {%- set date_string = strftime_now(\"%d %b %Y\") %}\n {%- else %}\n {%- set date_string = \"26 Jul 2024\" %}\n {%- endif %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {{- \"<|eot_id|>\" }}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
2054
  "clean_up_tokenization_spaces": true,
2055
  "eos_token": "<|eot_id|>",
2056
- "extra_special_tokens": {},
2057
  "model_input_names": [
2058
  "input_ids",
2059
  "attention_mask"
 
2053
  "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- if strftime_now is defined %}\n {%- set date_string = strftime_now(\"%d %b %Y\") %}\n {%- else %}\n {%- set date_string = \"26 Jul 2024\" %}\n {%- endif %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {{- \"<|eot_id|>\" }}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
2054
  "clean_up_tokenization_spaces": true,
2055
  "eos_token": "<|eot_id|>",
 
2056
  "model_input_names": [
2057
  "input_ids",
2058
  "attention_mask"
trainer_state.json CHANGED
@@ -1,7 +1,7 @@
1
  {
2
  "best_metric": null,
3
  "best_model_checkpoint": null,
4
- "epoch": 2.903225806451613,
5
  "eval_steps": 500,
6
  "global_step": 69,
7
  "is_hyper_param_search": false,
@@ -10,103 +10,103 @@
10
  "log_history": [
11
  {
12
  "epoch": 0.21505376344086022,
13
- "grad_norm": 4.990048408508301,
14
  "learning_rate": 1.9954719225730847e-05,
15
- "loss": 1.1226,
16
  "step": 5
17
  },
18
  {
19
  "epoch": 0.43010752688172044,
20
- "grad_norm": 4.11909294128418,
21
  "learning_rate": 1.9450008187146685e-05,
22
- "loss": 0.6465,
23
  "step": 10
24
  },
25
  {
26
  "epoch": 0.6451612903225806,
27
- "grad_norm": 2.001328706741333,
28
  "learning_rate": 1.8412535328311813e-05,
29
- "loss": 0.5056,
30
  "step": 15
31
  },
32
  {
33
  "epoch": 0.8602150537634409,
34
- "grad_norm": 1.5412222146987915,
35
  "learning_rate": 1.6900790114821122e-05,
36
- "loss": 0.4228,
37
  "step": 20
38
  },
39
  {
40
- "epoch": 1.043010752688172,
41
- "grad_norm": 1.5938291549682617,
42
  "learning_rate": 1.5000000000000002e-05,
43
- "loss": 0.3764,
44
  "step": 25
45
  },
46
  {
47
- "epoch": 1.2580645161290323,
48
- "grad_norm": 1.3997321128845215,
49
  "learning_rate": 1.2817325568414299e-05,
50
- "loss": 0.3061,
51
  "step": 30
52
  },
53
  {
54
- "epoch": 1.4731182795698925,
55
- "grad_norm": 1.2927430868148804,
56
  "learning_rate": 1.0475819158237426e-05,
57
- "loss": 0.2927,
58
  "step": 35
59
  },
60
  {
61
- "epoch": 1.6881720430107527,
62
- "grad_norm": 1.1591598987579346,
63
  "learning_rate": 8.107487556395902e-06,
64
- "loss": 0.2849,
65
  "step": 40
66
  },
67
  {
68
- "epoch": 1.903225806451613,
69
- "grad_norm": 1.0788626670837402,
70
  "learning_rate": 5.845849869981137e-06,
71
- "loss": 0.2609,
72
  "step": 45
73
  },
74
  {
75
- "epoch": 2.086021505376344,
76
- "grad_norm": 1.1503716707229614,
77
  "learning_rate": 3.818410137793947e-06,
78
- "loss": 0.2433,
79
  "step": 50
80
  },
81
  {
82
- "epoch": 2.3010752688172045,
83
- "grad_norm": 1.0680569410324097,
84
  "learning_rate": 2.1394690525721275e-06,
85
- "loss": 0.2139,
86
  "step": 55
87
  },
88
  {
89
- "epoch": 2.5161290322580645,
90
- "grad_norm": 1.1041356325149536,
91
  "learning_rate": 9.036800464548157e-07,
92
- "loss": 0.2041,
93
  "step": 60
94
  },
95
  {
96
- "epoch": 2.731182795698925,
97
- "grad_norm": 0.9912173748016357,
98
  "learning_rate": 1.8071302737293294e-07,
99
  "loss": 0.2012,
100
  "step": 65
101
  },
102
  {
103
- "epoch": 2.903225806451613,
104
  "step": 69,
105
- "total_flos": 2.582932209061069e+16,
106
- "train_loss": 0.38006642072097113,
107
- "train_runtime": 699.6666,
108
- "train_samples_per_second": 6.359,
109
- "train_steps_per_second": 0.099
110
  }
111
  ],
112
  "logging_steps": 5,
@@ -126,7 +126,7 @@
126
  "attributes": {}
127
  }
128
  },
129
- "total_flos": 2.582932209061069e+16,
130
  "train_batch_size": 4,
131
  "trial_name": null,
132
  "trial_params": null
 
1
  {
2
  "best_metric": null,
3
  "best_model_checkpoint": null,
4
+ "epoch": 2.967741935483871,
5
  "eval_steps": 500,
6
  "global_step": 69,
7
  "is_hyper_param_search": false,
 
10
  "log_history": [
11
  {
12
  "epoch": 0.21505376344086022,
13
+ "grad_norm": 5.693103313446045,
14
  "learning_rate": 1.9954719225730847e-05,
15
+ "loss": 1.1669,
16
  "step": 5
17
  },
18
  {
19
  "epoch": 0.43010752688172044,
20
+ "grad_norm": 1.963355302810669,
21
  "learning_rate": 1.9450008187146685e-05,
22
+ "loss": 0.6522,
23
  "step": 10
24
  },
25
  {
26
  "epoch": 0.6451612903225806,
27
+ "grad_norm": 1.6932282447814941,
28
  "learning_rate": 1.8412535328311813e-05,
29
+ "loss": 0.4912,
30
  "step": 15
31
  },
32
  {
33
  "epoch": 0.8602150537634409,
34
+ "grad_norm": 1.487468957901001,
35
  "learning_rate": 1.6900790114821122e-05,
36
+ "loss": 0.415,
37
  "step": 20
38
  },
39
  {
40
+ "epoch": 1.075268817204301,
41
+ "grad_norm": 1.5301791429519653,
42
  "learning_rate": 1.5000000000000002e-05,
43
+ "loss": 0.3687,
44
  "step": 25
45
  },
46
  {
47
+ "epoch": 1.2903225806451613,
48
+ "grad_norm": 1.3023558855056763,
49
  "learning_rate": 1.2817325568414299e-05,
50
+ "loss": 0.2981,
51
  "step": 30
52
  },
53
  {
54
+ "epoch": 1.5053763440860215,
55
+ "grad_norm": 1.2679604291915894,
56
  "learning_rate": 1.0475819158237426e-05,
57
+ "loss": 0.2836,
58
  "step": 35
59
  },
60
  {
61
+ "epoch": 1.7204301075268817,
62
+ "grad_norm": 1.180540919303894,
63
  "learning_rate": 8.107487556395902e-06,
64
+ "loss": 0.2772,
65
  "step": 40
66
  },
67
  {
68
+ "epoch": 1.935483870967742,
69
+ "grad_norm": 1.1995508670806885,
70
  "learning_rate": 5.845849869981137e-06,
71
+ "loss": 0.268,
72
  "step": 45
73
  },
74
  {
75
+ "epoch": 2.150537634408602,
76
+ "grad_norm": 1.1225168704986572,
77
  "learning_rate": 3.818410137793947e-06,
78
+ "loss": 0.2306,
79
  "step": 50
80
  },
81
  {
82
+ "epoch": 2.3655913978494625,
83
+ "grad_norm": 1.166407823562622,
84
  "learning_rate": 2.1394690525721275e-06,
85
+ "loss": 0.2085,
86
  "step": 55
87
  },
88
  {
89
+ "epoch": 2.5806451612903225,
90
+ "grad_norm": 1.157459020614624,
91
  "learning_rate": 9.036800464548157e-07,
92
+ "loss": 0.2009,
93
  "step": 60
94
  },
95
  {
96
+ "epoch": 2.795698924731183,
97
+ "grad_norm": 1.1147010326385498,
98
  "learning_rate": 1.8071302737293294e-07,
99
  "loss": 0.2012,
100
  "step": 65
101
  },
102
  {
103
+ "epoch": 2.967741935483871,
104
  "step": 69,
105
+ "total_flos": 2.640330688875725e+16,
106
+ "train_loss": 0.37769337063250336,
107
+ "train_runtime": 647.3014,
108
+ "train_samples_per_second": 6.873,
109
+ "train_steps_per_second": 0.107
110
  }
111
  ],
112
  "logging_steps": 5,
 
126
  "attributes": {}
127
  }
128
  },
129
+ "total_flos": 2.640330688875725e+16,
130
  "train_batch_size": 4,
131
  "trial_name": null,
132
  "trial_params": null
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f06a6c8c59f263f31aa6367582d6ec749e1bcebd5574d2476d628b9bef205ccd
3
- size 5624
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c3cc74d9a5d1dacb30e0918d7fae1d54a3a9e4574b16b13b69ba25cc9b3c32b
3
+ size 5496