My_LunnarLander_V2 / config.json
narySt's picture
first DeepRL attempt
dbaae8a verified
raw
history blame
13.8 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b2c3afc3e20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b2c3afc3eb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b2c3afc3f40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b2c3afd0040>", "_build": "<function ActorCriticPolicy._build at 0x7b2c3afd00d0>", "forward": "<function ActorCriticPolicy.forward at 0x7b2c3afd0160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b2c3afd01f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b2c3afd0280>", "_predict": "<function ActorCriticPolicy._predict at 0x7b2c3afd0310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b2c3afd03a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b2c3afd0430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b2c3afd04c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b2c3b161280>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1705769023970261785, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALMhb72FEMY8CFWoPXk5f74RY5C7A57quwAAAAAAAAAAABzDvK7N1zugLme9LkFnvnr3Nb0qlxI8AAAAAAAAAAA6PyO+EOLtPuM8cj4bDGu+6NDSPKL7irwAAAAAAAAAAIAWsT1JspA/DmzPPX2th75+m8w9ct55vQAAAAAAAAAAzcsJvTZjgj8QrXi9t4ucviDRb73WXg49AAAAAAAAAADNTKG7e4KBujuD7LHwQ1yw4KZOORsC4zIAAIA/AACAPwC/mLyfCoK77BArPOzIoDyt76Y8+uGIvQAAgD8AAIA/AGPmPAOWAry52pW9MIAqPQVpUT0F4Qq+AACAPwAAgD/zN8O9HKZIvER3l7zAaJg8uhenvYLReD0AAAAAAACAP1pjPj4HtwY/4g4uvuC8ar4iE8u7zR0xvQAAAAAAAAAA8/65PWnmIj2NS+i92fSQvgIUmL1AxeS8AAAAAAAAAACaPMo9ahvkPtKyazvThz6+yaxcu/KB7TwAAAAAAAAAALNVb72FfNe7QGBAPCGUnDyVRSg9KoODvQAAgD8AAIA/APAiO9E8pT+92im6J6S5vtNxYj0qy+Q5AAAAAAAAAAC+3b6+BbWUvYMpLLwAAta7411SPgkXMb0AAAAAAACAP03Rgb2PuzC8blNMPK0EHj2RSII9/30ZPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGRyI+GGmGMAWyUTVEBjAF0lEdAlrHmweNkv3V9lChoBkdATqwFA3T/hmgHS+JoCEdAlrNumelKsnV9lChoBkdAbeQjZ+QU6GgHTUMBaAhHQJazb4xk/bF1fZQoaAZHQHKIhdld1MdoB00gAWgIR0CWtE/ffoA5dX2UKGgGR0Bw8ony/bj+aAdNaQFoCEdAlrRg6EJ0GXV9lChoBkdAcP0XDFZPmGgHTTYBaAhHQJa1rHggow51fZQoaAZHQGy4h5xBE8doB01NAWgIR0CWtiQeFL39dX2UKGgGR0ByB+DRMN+caAdNJgFoCEdAlrZGOZLIxXV9lChoBkdAch6qqOtGNWgHTUQBaAhHQJa2UWbgCOp1fZQoaAZHQHLR3gpBomJoB00/AWgIR0CWtsCgK4QSdX2UKGgGR0BumfhQ3xWlaAdNFAFoCEdAlrbVa8pTdnV9lChoBkdAcLOIWxhUi2gHTTQBaAhHQJa3nbypaRp1fZQoaAZHQHLmskY4yXVoB00xAWgIR0CWuIo+OfdzdX2UKGgGR0BtS9mrbQC0aAdNMQFoCEdAlrpBcRlH0HV9lChoBkdAcdUr9l2/z2gHTYIBaAhHQJa7kabWmP51fZQoaAZHQG6i1eKKpDNoB00mAWgIR0CWvESgGr0bdX2UKGgGR0BucOm78Nx3aAdNMAFoCEdAlryeLWI42nV9lChoBkdAcG8/9YOlPGgHTT0BaAhHQJa/fXNC7bt1fZQoaAZHQG9DZgPVd5ZoB01AAWgIR0CWv6DF6zE8dX2UKGgGR0BzZXbEgntwaAdNKAFoCEdAlr/kuctoSXV9lChoBkdAcd2n6Eal12gHTTsBaAhHQJbAnpHI6sB1fZQoaAZHQGukAy/KyOdoB00mAWgIR0CWwpup0fYBdX2UKGgGR0Bw0zszEaVEaAdNKwFoCEdAlsLEa/ATI3V9lChoBkdAbI+1P3ztkWgHTSIBaAhHQJbDIxGlQ/J1fZQoaAZHQHA6p/kNnXdoB00pAWgIR0CWw3ZVn27GdX2UKGgGR0Bx4c1IiC8OaAdNYAFoCEdAlsPzD0lJH3V9lChoBkdAcbcruIAOrmgHTV8BaAhHQJbEUl4TsY51fZQoaAZHQG4KLR0EHMVoB01AAWgIR0CWxND7IkqudX2UKGgGR0BvwIlv60pmaAdNLQFoCEdAlsT8CLdepnV9lChoBkdAb9zLYf4h2WgHTR4BaAhHQJbFsDdP+GZ1fZQoaAZHQGwTRTS9du5oB00aAWgIR0CWxn5dnkDIdX2UKGgGR0BxfVfAsTWYaAdNJQFoCEdAlsdFHrhR7HV9lChoBkdAUgZG8VYZEWgHS85oCEdAlseLEHdGiHV9lChoBkdAcg0dlum78WgHTS4BaAhHQJbHxkrf+CN1fZQoaAZHQG4SsEzO5axoB00jAWgIR0CWyWMX7+DOdX2UKGgGR0Bvoe/rSmZWaAdNHQFoCEdAlsl9si0OVnV9lChoBkdAb+CmUGFBY2gHTVQBaAhHQJbLNjMFEAp1fZQoaAZHQHAxmEPDpC9oB00eAWgIR0CWy7XWe6I4dX2UKGgGR0ByMMe+23KCaAdNLgFoCEdAls2QSeyzHHV9lChoBkdAb/vG2kSElGgHTSIBaAhHQJbNmoegctJ1fZQoaAZHQHJnJ3C9AX5oB01XAWgIR0CWzay0KJEZdX2UKGgGR0Bv6OkN4JNTaAdNQgFoCEdAls23UhFEzHV9lChoBkdAcR3C5Etuk2gHTTMBaAhHQJbO8jxCpm51fZQoaAZHQG9/xe9i+cpoB02AAWgIR0CWz3+mFajfdX2UKGgGR0BzGcbbUPQOaAdNTQFoCEdAls+fj0cwQHV9lChoBkdAceVDwpe/pWgHTVcBaAhHQJbQ8UqQRwt1fZQoaAZHQHIZqFVT72toB01LAWgIR0CW0WesPrfMdX2UKGgGR0Bwbug5BC2MaAdNEgFoCEdAltLZ4bCJoHV9lChoBkdAcITT987ZF2gHTWkBaAhHQJbTY4ku6Et1fZQoaAZHQHBeqOYIBzVoB01dAWgIR0CW047XQMQVdX2UKGgGR0BzQOBy0a60aAdNXwFoCEdAluX8dDIBBHV9lChoBkdAcEOOCXhOxmgHTT4BaAhHQJbmsw1zhgp1fZQoaAZHQHD6avNeMQ5oB001AWgIR0CW5t9JBgNPdX2UKGgGR0BwmVttQ9A5aAdNIAFoCEdAluf4iTt9hXV9lChoBkdAciiiB5HEuWgHTS0BaAhHQJboT3qRlpZ1fZQoaAZHQHEN6ZYxL01oB01LAWgIR0CW6U7ulXRxdX2UKGgGR0BtXLZ39rGjaAdNTAFoCEdAluluoLofS3V9lChoBkdAckRllK9PDmgHTTcBaAhHQJbp3ynUDuB1fZQoaAZHQHMQFe4TbnJoB00jAWgIR0CW6d/wiJO4dX2UKGgGR0ByQ9XGOuJUaAdNLQFoCEdAluoHt4RmLHV9lChoBkdAb+Y7pV0cO2gHTSABaAhHQJbq9q1w5vN1fZQoaAZHQG1yguZkTYdoB00mAWgIR0CW6+OY6XBydX2UKGgGR0ByIT9tMwlCaAdNGgFoCEdAlu0bc45tFnV9lChoBkdAcF37T2FnI2gHTRwBaAhHQJbuGIznA7B1fZQoaAZHQG+9jhcZ9/loB00+AWgIR0CW71e2d/aydX2UKGgGR0BJywQ176YWaAdLrGgIR0CW8JrdnCfpdX2UKGgGR0BuQ8690zTGaAdNKQFoCEdAlvHn2/SH/XV9lChoBkdAcLPNwiqyW2gHTSYBaAhHQJbyAk5ZKWd1fZQoaAZHQG5+RmseXAxoB01pAWgIR0CW9BFmnO0LdX2UKGgGR0BwMcSVW0Z4aAdNHQFoCEdAlvVuinHeanV9lChoBkdAcjd9hqj8DWgHTUUBaAhHQJb1r2USqVB1fZQoaAZHQHDfTDXOGCZoB00oAWgIR0CW9w8BuGbkdX2UKGgGR0BwLmeK8+RpaAdNTAFoCEdAlvdy9VWCE3V9lChoBkdAcAr7Qswta2gHTTIBaAhHQJb4oP1+RYB1fZQoaAZHQHG+YHxBmf5oB01nAWgIR0CW+RD9fkWAdX2UKGgGR0BvlaimEXchaAdNEQFoCEdAlvk4xk/bCnV9lChoBkdAcV6yi22G7GgHTTUBaAhHQJb5aF23azx1fZQoaAZHQG4Gq8L8aXNoB00aAWgIR0CW+jlGPPszdX2UKGgGR0BuybyBkI5YaAdNGAFoCEdAlvsVsk6cRXV9lChoBkdAZzkdBBzFM2gHTegDaAhHQJb82f/WDpV1fZQoaAZHQG0NSpJf6XVoB00WAWgIR0CW/QMK1G9YdX2UKGgGR0BwkypxWDHwaAdNMgFoCEdAlv4l0cOsk3V9lChoBkdAcBcr6ciGFmgHTVEBaAhHQJb+OYnfEXN1fZQoaAZHQHCNwuIyj59oB00nAWgIR0CW/0KeTV2BdX2UKGgGR0BwDPEsJ6Y3aAdNHgFoCEdAlwAR1oxpL3V9lChoBkdAbx/WQOnVG2gHTSgBaAhHQJcAQdn003x1fZQoaAZHQG3Gwj+rELpoB00rAWgIR0CXAXM72cridX2UKGgGR0BxOWgJ1JUYaAdNMAFoCEdAlwICLdepoHV9lChoBkdAcVcYxL0z02gHTSYBaAhHQJcC2MsH0K91fZQoaAZHQHIThcE/0NBoB00jAWgIR0CXA45Y5ksjdX2UKGgGR0Bw7g03wTdtaAdNDAFoCEdAlwOr3Cbc5HV9lChoBkdAUKPQiRnvlWgHS8FoCEdAlwPl9fCyhXV9lChoBkdAc2Fxn3+MqGgHTTwBaAhHQJcEHfCQ9zR1fZQoaAZHQGvgKCYkVvdoB005AWgIR0CXBDAE+xGEdX2UKGgGR0BufLKV6eGxaAdNCAFoCEdAlwYyde6ZpnV9lChoBkdAcM5yLhrFfmgHTT0BaAhHQJcGTSWqtHR1fZQoaAZHQHEQQwGnn+1oB00BAWgIR0CXByl41P30dX2UKGgGR0ByGvXmNipeaAdNHAFoCEdAlwomhIvrW3V9lChoBkdAcpNptaY/mmgHTVUBaAhHQJcKRXzUZvV1fZQoaAZHQHHs1s1sLv1oB01BAWgIR0CXCrzr/sE8dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}