3outeille HF staff commited on
Commit
c9d10c4
1 Parent(s): 3457378

Upload llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-64

Browse files
llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-64/bench.slurm ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ #SBATCH --job-name=bench_cluster
4
+ #SBATCH --time=02:00:00
5
+ #SBATCH --partition=hopper-prod
6
+ #SBATCH --nodes=1
7
+ #SBATCH --gres=gpu:8
8
+ #SBATCH --qos=normal
9
+ #SBATCH --ntasks-per-node=1
10
+ #SBATCH --cpus-per-task=96
11
+ #SBATCH --exclusive
12
+ #SBATCH --output=/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-64/log.out
13
+ #SBATCH --error=/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-64/log.out
14
+
15
+ # Function to update status based on squeue output
16
+ update_status() {
17
+ job_id=$1
18
+ status_file=$2
19
+ # For unknown reasons, it doenst update status for pending. It only works for running
20
+ while true; do
21
+ job_status=$(squeue --job $job_id --noheader --format=%T)
22
+ echo "Job status: $job_status"
23
+ if [ -z "$job_status" ]; then
24
+ # Job has finished or is not found
25
+ break
26
+ elif [ "$job_status" = "RUNNING" ]; then
27
+ printf "running" > $status_file
28
+ break
29
+ fi
30
+ sleep 10
31
+ done
32
+ }
33
+
34
+ # Misc initializations.
35
+ echo "========================"
36
+ echo "START TIME: $(date)"
37
+ source /fsx/ferdinandmom/miniforge3/etc/profile.d/conda.sh
38
+ conda activate /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster
39
+ echo python3 version = $(python3 --version)
40
+ echo "========================"
41
+
42
+ # Slurm stuff
43
+ export HOSTNAMES=$(scontrol show hostnames "$SLURM_JOB_NODELIST")
44
+ export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
45
+ export MASTER_PORT=$((1024 + RANDOM % 64511))
46
+
47
+ export TMPDIR=/scratch
48
+ export HF_DATASETS_CACHE="/admin/home/ferdinand_mom/.cache"
49
+ export CUBLAS_WORKSPACE_CONFIG=":4096:8"
50
+ export CUDA_DEVICE_MAX_CONNECTIONS="1"
51
+
52
+ huggingface-cli login --token $HUGGINGFACE_TOKEN
53
+
54
+
55
+ NANOTRON_REPO="/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron"
56
+ CMD="$NANOTRON_REPO/run_train.py --config-file /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-64/config.yaml"
57
+
58
+ LAUNCHER="torchrun \
59
+ --nproc_per_node 8 \
60
+ --nnodes 1 \
61
+ --rdzv_endpoint ${MASTER_ADDR}:${MASTER_PORT} \
62
+ --rdzv_backend c10d \
63
+ --max_restarts 0 \
64
+ --tee 3 \
65
+ --node_rank ${SLURM_PROCID}"
66
+
67
+ # Checkout the bench_cluster branch
68
+ cd $NANOTRON_REPO
69
+ git checkout bench_cluster
70
+ cd ..
71
+ # Get the current job ID
72
+ job_id=${SLURM_JOB_ID}
73
+
74
+ # Update status to "pending" or "running" in the background
75
+ update_status $job_id /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-64/status.txt &
76
+
77
+ # Run the main command
78
+ srun -u $LAUNCHER $CMD
79
+ exit_status=$?
80
+
81
+ # Update status based on the exit status of `srun`
82
+ if [ $exit_status -eq 0 ]; then
83
+ printf "completed" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-64/status.txt
84
+ else
85
+ if grep -q "OutOfMemoryError" /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-64/log.out; then
86
+ printf "oom" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-64/status.txt
87
+ elif grep -q " CUDA error: an illegal memory access" /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-64/log.out; then
88
+ printf "oom" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-64/status.txt
89
+ elif grep -q "Timeout at NCCL" /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-64/log.out; then
90
+ printf "timeout" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-64/status.txt
91
+ else
92
+ printf "fail" > /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-64/status.txt
93
+ fi
94
+ fi
95
+
96
+ # Run the report script if the job completed successfully
97
+ if [ $exit_status -eq 0 ]; then
98
+ python /fsx/ferdinandmom/ferdinand-hf/bench_cluster/main.py report --inp_dir /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-64 --is_logs
99
+ python /fsx/ferdinandmom/ferdinand-hf/bench_cluster/main.py report --inp_dir /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-64 --is_profiler
100
+ fi
101
+
102
+
103
+ # Push to hub the folder using huggingface_cli
104
+ huggingface-cli upload nanotron/bench_cluster /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-64 llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-64 --commit-message "Upload llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-64"
105
+
106
+ # Verify the upload
107
+ if [ $? -eq 0 ]; then
108
+ echo "Uploading to Huggingface Hub successful"
109
+ else
110
+ echo "Failed to upload to Huggingface Hub"
111
+ fi
llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-64/config.yaml ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ general:
2
+ project: bench_cluster
3
+ seed: 42
4
+ model:
5
+ ddp_bucket_cap_mb: 25
6
+ dtype: bfloat16
7
+ init_method:
8
+ std: 0.025
9
+ make_vocab_size_divisible_by: 1
10
+ model_config:
11
+ bos_token_id: 1
12
+ eos_token_id: 2
13
+ hidden_act: silu
14
+ hidden_size: 2048
15
+ initializer_range: 0.02
16
+ intermediate_size: 4096
17
+ is_llama_config: true
18
+ max_position_embeddings: 4096
19
+ num_attention_heads: 32
20
+ num_hidden_layers: 24
21
+ num_key_value_heads: 32
22
+ pad_token_id: null
23
+ pretraining_tp: 1
24
+ rms_norm_eps: 1.0e-05
25
+ rope_scaling: null
26
+ rope_theta: 10000.0
27
+ tie_word_embeddings: true
28
+ use_cache: true
29
+ vocab_size: 50257
30
+ optimizer:
31
+ accumulate_grad_in_fp32: true
32
+ clip_grad: 1.0
33
+ learning_rate_scheduler:
34
+ learning_rate: 0.0001
35
+ lr_decay_style: linear
36
+ lr_warmup_style: linear
37
+ lr_warmup_steps: 1
38
+ min_decay_lr: 1.0e-05
39
+ optimizer_factory:
40
+ adam_beta1: 0.9
41
+ adam_beta2: 0.95
42
+ adam_eps: 1.0e-08
43
+ name: adamW
44
+ torch_adam_is_fused: true
45
+ weight_decay: 0.01
46
+ zero_stage: 1
47
+ parallelism:
48
+ dp: 1
49
+ expert_parallel_size: 1
50
+ pp: 1
51
+ pp_engine: 1f1b
52
+ tp: 8
53
+ tp_linear_async_communication: false
54
+ tp_mode: REDUCE_SCATTER
55
+ profiler:
56
+ profiler_export_path: /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-64
57
+ tokenizer:
58
+ tokenizer_max_length: null
59
+ tokenizer_name_or_path: openai-community/gpt2
60
+ tokenizer_revision: null
61
+ data_stages:
62
+ - name: Training Stage
63
+ start_training_step: 1
64
+ data:
65
+ dataset:
66
+ dataset_overwrite_cache: false
67
+ dataset_processing_num_proc_per_process: 64
68
+ hf_dataset_config_name: null
69
+ hf_dataset_or_datasets: roneneldan/TinyStories
70
+ hf_dataset_splits: train
71
+ text_column_name: text
72
+ num_loading_workers: 0
73
+ seed: 42
74
+ lighteval: null
75
+ tokens:
76
+ train_steps: 20
77
+ val_check_interval: -1
78
+ batch_accumulation_per_replica: 16
79
+ limit_test_batches: 0
80
+ limit_val_batches: 0
81
+ micro_batch_size: 64
82
+ sequence_length: 4096
83
+ logging:
84
+ iteration_step_info_interval: 1
85
+ log_level: info
86
+ log_level_replica: info
87
+ checkpoints:
88
+ checkpoint_interval: 100000
89
+ checkpoints_path: /dev/null
90
+ resume_checkpoint_path: null
llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-64/log.out ADDED
@@ -0,0 +1,667 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ========================
2
+ START TIME: Wed Jul 3 22:44:22 UTC 2024
3
+ python3 version = Python 3.10.14
4
+ ========================
5
+ The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.
6
+ Token is valid (permission: write).
7
+ Your token has been saved to /admin/home/ferdinand_mom/.cache/huggingface/token
8
+ Login successful
9
+ Already on 'bench_cluster'
10
+ M examples/config_tiny_llama.py
11
+ M examples/config_tiny_llama.yaml
12
+ M examples/train_tiny_llama.sh
13
+ M src/nanotron/models/llama.py
14
+ M src/nanotron/trainer.py
15
+ Your branch is up to date with 'origin/bench_cluster'.
16
+ Job status: RUNNING
17
+ W0703 22:44:25.641000 139726242240320 torch/distributed/run.py:757]
18
+ W0703 22:44:25.641000 139726242240320 torch/distributed/run.py:757] *****************************************
19
+ W0703 22:44:25.641000 139726242240320 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
20
+ W0703 22:44:25.641000 139726242240320 torch/distributed/run.py:757] *****************************************
21
+ [default0]:07/03/2024 22:44:42 [WARNING|DP=0|PP=0|TP=0|ip-26-0-161-178]: [Vocab Size Padding] Padded vocab (size: 50257) with 7 dummy tokens (new size: 50264)
22
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Config:
23
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Config(general=GeneralArgs(project='bench_cluster',
24
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: run='%date_%jobid',
25
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: seed=42,
26
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: step=None,
27
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: consumed_train_samples=None,
28
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: benchmark_csv_path=None,
29
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: ignore_sanity_checks=True),
30
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: parallelism=ParallelismArgs(dp=1,
31
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: pp=1,
32
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: tp=8,
33
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: pp_engine=<nanotron.parallel.pipeline_parallel.engine.OneForwardOneBackwardPipelineEngine object at 0x7feccf030940>,
34
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: tp_mode=<TensorParallelLinearMode.REDUCE_SCATTER: 2>,
35
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: tp_linear_async_communication=False,
36
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: expert_parallel_size=1),
37
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: model=ModelArgs(model_config=LlamaConfig(bos_token_id=1,
38
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: eos_token_id=2,
39
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: hidden_act='silu',
40
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: hidden_size=2048,
41
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: initializer_range=0.02,
42
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: intermediate_size=4096,
43
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: is_llama_config=True,
44
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: max_position_embeddings=4096,
45
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: num_attention_heads=32,
46
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: num_hidden_layers=24,
47
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: num_key_value_heads=32,
48
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: pad_token_id=None,
49
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: pretraining_tp=1,
50
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: rms_norm_eps=1e-05,
51
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: rope_scaling=None,
52
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: rope_theta=10000.0,
53
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: tie_word_embeddings=True,
54
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: use_cache=True,
55
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: vocab_size=50264),
56
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: init_method=RandomInit(std=0.025),
57
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: dtype=torch.bfloat16,
58
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: make_vocab_size_divisible_by=1,
59
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: ddp_bucket_cap_mb=25),
60
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: tokenizer=TokenizerArgs(tokenizer_name_or_path='openai-community/gpt2',
61
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: tokenizer_revision=None,
62
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: tokenizer_max_length=None),
63
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: checkpoints=CheckpointsArgs(checkpoints_path=Path('/dev/null'),
64
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: checkpoint_interval=100000,
65
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: save_initial_state=False,
66
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: resume_checkpoint_path=None,
67
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: checkpoints_path_is_shared_file_system=False),
68
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: logging=LoggingArgs(log_level='info',
69
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: log_level_replica='info',
70
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: iteration_step_info_interval=1),
71
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: tokens=TokensArgs(sequence_length=4096,
72
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: train_steps=20,
73
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: micro_batch_size=64,
74
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: batch_accumulation_per_replica=16,
75
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: val_check_interval=-1,
76
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: limit_val_batches=0,
77
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: limit_test_batches=0),
78
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: optimizer=OptimizerArgs(optimizer_factory=AdamWOptimizerArgs(adam_eps=1e-08,
79
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: adam_beta1=0.9,
80
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: adam_beta2=0.95,
81
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: torch_adam_is_fused=True,
82
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: name='adamW'),
83
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: zero_stage=1,
84
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: weight_decay=0.01,
85
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: clip_grad=1.0,
86
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: accumulate_grad_in_fp32=True,
87
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: learning_rate_scheduler=LRSchedulerArgs(learning_rate=0.0001,
88
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: lr_warmup_steps=1,
89
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: lr_warmup_style='linear',
90
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: lr_decay_style='linear',
91
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: lr_decay_steps=19,
92
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: lr_decay_starting_step=None,
93
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: min_decay_lr=1e-05)),
94
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: data_stages=[DatasetStageArgs(name='Training Stage',
95
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: start_training_step=1,
96
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: data=DataArgs(dataset=PretrainDatasetsArgs(hf_dataset_or_datasets='roneneldan/TinyStories',
97
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: hf_dataset_splits='train',
98
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: hf_dataset_config_name=None,
99
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: dataset_processing_num_proc_per_process=64,
100
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: dataset_overwrite_cache=False,
101
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: text_column_name='text'),
102
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: seed=42,
103
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: num_loading_workers=0))],
104
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: profiler=ProfilerArgs(profiler_export_path=Path('/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-64')),
105
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: lighteval=None)
106
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Model Config:
107
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: LlamaConfig(bos_token_id=1,
108
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: eos_token_id=2,
109
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: hidden_act='silu',
110
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: hidden_size=2048,
111
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: initializer_range=0.02,
112
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: intermediate_size=4096,
113
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: is_llama_config=True,
114
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: max_position_embeddings=4096,
115
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: num_attention_heads=32,
116
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: num_hidden_layers=24,
117
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: num_key_value_heads=32,
118
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: pad_token_id=None,
119
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: pretraining_tp=1,
120
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: rms_norm_eps=1e-05,
121
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: rope_scaling=None,
122
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: rope_theta=10000.0,
123
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: tie_word_embeddings=True,
124
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: use_cache=True,
125
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: vocab_size=50264)
126
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Building model..
127
+ [default0]:07/03/2024 22:44:42 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Setting PP block ranks...
128
+ [default3]:07/03/2024 22:44:57 [INFO|DP=0|PP=0|TP=3|ip-26-0-161-178]: Local number of parameters: 139M (264.73MiB)
129
+ [default3]:07/03/2024 22:44:57 [INFO|DP=0|PP=0|TP=3|ip-26-0-161-178]: [After model building] Memory usage: 290.76MiB. Peak allocated: 317.33MiB Peak reserved: 324.00MiB
130
+ [default3]:07/03/2024 22:44:57 [INFO|DP=0|PP=0|TP=3|ip-26-0-161-178]: No checkpoint path provided.
131
+ [default7]:07/03/2024 22:44:57 [INFO|DP=0|PP=0|TP=7|ip-26-0-161-178]: Local number of parameters: 139M (264.73MiB)
132
+ [default7]:07/03/2024 22:44:57 [INFO|DP=0|PP=0|TP=7|ip-26-0-161-178]: [After model building] Memory usage: 290.76MiB. Peak allocated: 317.33MiB Peak reserved: 324.00MiB
133
+ [default7]:07/03/2024 22:44:57 [INFO|DP=0|PP=0|TP=7|ip-26-0-161-178]: No checkpoint path provided.
134
+ [default0]:07/03/2024 22:44:57 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Total number of parameters: 1.11G (2117.88MiB)
135
+ [default0]:07/03/2024 22:44:57 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Local number of parameters: 139M (264.73MiB)
136
+ [default0]:07/03/2024 22:44:57 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [After model building] Memory usage: 290.76MiB. Peak allocated: 317.33MiB Peak reserved: 324.00MiB
137
+ [default0]:07/03/2024 22:44:57 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: No checkpoint path provided.
138
+ [default0]:07/03/2024 22:44:57 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Parametrizing model parameters using StandardParametrizator
139
+ [default0]:07/03/2024 22:44:57 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [Optimizer Building] Using LearningRateForSP as learning rate
140
+ [default0]:07/03/2024 22:44:57 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [ZeRO sharding] Size of optimizer params per rank:
141
+ [default0]:07/03/2024 22:44:57 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [ZeRO sharding] DP Rank 0 has 139M out of 139M (100.00%) params' optimizer states
142
+ [default1]:07/03/2024 22:44:57 [INFO|DP=0|PP=0|TP=1|ip-26-0-161-178]: Local number of parameters: 139M (264.73MiB)
143
+ [default1]:07/03/2024 22:44:57 [INFO|DP=0|PP=0|TP=1|ip-26-0-161-178]: [After model building] Memory usage: 290.76MiB. Peak allocated: 317.33MiB Peak reserved: 324.00MiB
144
+ [default1]:07/03/2024 22:44:57 [INFO|DP=0|PP=0|TP=1|ip-26-0-161-178]: No checkpoint path provided.
145
+ [default4]:07/03/2024 22:44:57 [INFO|DP=0|PP=0|TP=4|ip-26-0-161-178]: Local number of parameters: 139M (264.73MiB)
146
+ [default4]:07/03/2024 22:44:57 [INFO|DP=0|PP=0|TP=4|ip-26-0-161-178]: [After model building] Memory usage: 290.76MiB. Peak allocated: 317.33MiB Peak reserved: 324.00MiB
147
+ [default4]:07/03/2024 22:44:57 [INFO|DP=0|PP=0|TP=4|ip-26-0-161-178]: No checkpoint path provided.
148
+ [default2]:07/03/2024 22:44:57 [INFO|DP=0|PP=0|TP=2|ip-26-0-161-178]: Local number of parameters: 139M (264.73MiB)
149
+ [default2]:07/03/2024 22:44:57 [INFO|DP=0|PP=0|TP=2|ip-26-0-161-178]: [After model building] Memory usage: 290.76MiB. Peak allocated: 317.33MiB Peak reserved: 324.00MiB
150
+ [default2]:07/03/2024 22:44:57 [INFO|DP=0|PP=0|TP=2|ip-26-0-161-178]: No checkpoint path provided.
151
+ [default6]:07/03/2024 22:44:57 [INFO|DP=0|PP=0|TP=6|ip-26-0-161-178]: Local number of parameters: 139M (264.73MiB)
152
+ [default6]:07/03/2024 22:44:57 [INFO|DP=0|PP=0|TP=6|ip-26-0-161-178]: [After model building] Memory usage: 290.76MiB. Peak allocated: 317.33MiB Peak reserved: 324.00MiB
153
+ [default5]:07/03/2024 22:44:57 [INFO|DP=0|PP=0|TP=5|ip-26-0-161-178]: Local number of parameters: 139M (264.73MiB)
154
+ [default5]:07/03/2024 22:44:57 [INFO|DP=0|PP=0|TP=5|ip-26-0-161-178]: [After model building] Memory usage: 290.76MiB. Peak allocated: 317.33MiB Peak reserved: 324.00MiB
155
+ [default5]:07/03/2024 22:44:57 [INFO|DP=0|PP=0|TP=5|ip-26-0-161-178]: No checkpoint path provided.
156
+ [default6]:07/03/2024 22:44:57 [INFO|DP=0|PP=0|TP=6|ip-26-0-161-178]: No checkpoint path provided.
157
+ [default0]:07/03/2024 22:44:58 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [Training Plan] Stage Training Stage has 19 remaining training steps and has consumed 0 samples
158
+ [default0]:07/03/2024 22:44:58 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Using `datasets` library
159
+ [default0]:07/03/2024 22:44:58 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Loading tokenizer from openai-community/gpt2 and transformers/hf_hub versions ('4.41.2', '0.23.4')
160
+ [default0]:07/03/2024 22:44:58 [WARNING|DP=0|PP=0|TP=0|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
161
+ [default0]:Repo card metadata block was not found. Setting CardData to empty.
162
+ [default0]:07/03/2024 22:44:59 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [Training Plan] There are 1 training stages
163
+ [default0]:07/03/2024 22:44:59 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [Stage Training Stage] start from step 1
164
+ [default0]:07/03/2024 22:44:59 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]:
165
+ [default0]:07/03/2024 22:44:59 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: [Start training] datetime: 2024-07-03 22:44:59.542192 | mbs: 64 | grad_accum: 16 | global_batch_size: 1024 | sequence_length: 4096 | train_steps: 20 | start_iteration_step: 0 | consumed_train_samples: 0
166
+ [default0]:07/03/2024 22:44:59 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Resuming training from stage Training Stage, it has trained for 0 samples and has 19 remaining train steps
167
+ [default0]:07/03/2024 22:44:59 [INFO|DP=0|PP=0|TP=0|ip-26-0-161-178]: Memory usage: 1350.75MiB. Peak allocated 1350.76MiB. Peak reserved: 1384.00MiB
168
+ [default4]:Repo card metadata block was not found. Setting CardData to empty.
169
+ [default4]:07/03/2024 22:44:59 [WARNING|DP=0|PP=0|TP=4|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
170
+ [default6]:Repo card metadata block was not found. Setting CardData to empty.
171
+ [default6]:07/03/2024 22:44:59 [WARNING|DP=0|PP=0|TP=6|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
172
+ [default3]:07/03/2024 22:44:59 [WARNING|DP=0|PP=0|TP=3|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
173
+ [default7]:07/03/2024 22:44:59 [WARNING|DP=0|PP=0|TP=7|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
174
+ [default1]:07/03/2024 22:44:59 [WARNING|DP=0|PP=0|TP=1|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
175
+ [default2]:Repo card metadata block was not found. Setting CardData to empty.
176
+ [default1]:Repo card metadata block was not found. Setting CardData to empty.
177
+ [default7]:Repo card metadata block was not found. Setting CardData to empty.
178
+ [default2]:07/03/2024 22:44:59 [WARNING|DP=0|PP=0|TP=2|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
179
+ [default5]:07/03/2024 22:44:59 [WARNING|DP=0|PP=0|TP=5|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
180
+ [default3]:Repo card metadata block was not found. Setting CardData to empty.
181
+ [default5]:Repo card metadata block was not found. Setting CardData to empty.
182
+ [default1]:07/03/2024 22:45:10 [WARNING|DP=0|PP=0|TP=1|ip-26-0-161-178]: Using the latest cached version of the dataset since roneneldan/TinyStories couldn't be found on the Hugging Face Hub
183
+ [default1]:07/03/2024 22:45:10 [WARNING|DP=0|PP=0|TP=1|ip-26-0-161-178]: Found the latest cached dataset configuration 'default' at /admin/home/ferdinand_mom/.cache/roneneldan___tiny_stories/default/0.0.0/691b0d9bd48ade766778c940011ca1c549f6359b (last modified on Mon Jun 24 07:59:52 2024).
184
+ [default1]:Using the latest cached version of the dataset since roneneldan/TinyStories couldn't be found on the Hugging Face Hub
185
+ [default1]:Found the latest cached dataset configuration 'default' at /admin/home/ferdinand_mom/.cache/roneneldan___tiny_stories/default/0.0.0/691b0d9bd48ade766778c940011ca1c549f6359b (last modified on Mon Jun 24 07:59:52 2024).
186
+ [default2]:[rank2]: Traceback (most recent call last):
187
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
188
+ [default2]:[rank2]: trainer.train(dataloader)
189
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
190
+ [default2]:[rank2]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
191
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
192
+ [default2]:[rank2]: outputs = self.pipeline_engine.train_batch_iter(
193
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
194
+ [default2]:[rank2]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
195
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
196
+ [default2]:[rank2]: output = model(**micro_batch)
197
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
198
+ [default2]:[rank2]: return self._call_impl(*args, **kwargs)
199
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
200
+ [default2]:[rank2]: return forward_call(*args, **kwargs)
201
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
202
+ [default2]:[rank2]: sharded_logits = self.model(
203
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
204
+ [default2]:[rank2]: return self._call_impl(*args, **kwargs)
205
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
206
+ [default2]:[rank2]: return forward_call(*args, **kwargs)
207
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
208
+ [default2]:[rank2]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
209
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
210
+ [default2]:[rank2]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
211
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
212
+ [default2]:[rank2]: return self._call_impl(*args, **kwargs)
213
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
214
+ [default2]:[rank2]: return forward_call(*args, **kwargs)
215
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
216
+ [default2]:[rank2]: output = self.pp_block(**new_kwargs)
217
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
218
+ [default2]:[rank2]: return self._call_impl(*args, **kwargs)
219
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
220
+ [default2]:[rank2]: return forward_call(*args, **kwargs)
221
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
222
+ [default2]:[rank2]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
223
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
224
+ [default2]:[rank2]: return self._call_impl(*args, **kwargs)
225
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
226
+ [default2]:[rank2]: return forward_call(*args, **kwargs)
227
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 172, in forward
228
+ [default2]:[rank2]: hidden_states = self.down_proj(self.split_silu_mul(merged_states))
229
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
230
+ [default2]:[rank2]: return self._call_impl(*args, **kwargs)
231
+ [default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
232
+ [default2]:[rank2]: return forward_call(*args, **kwargs)
233
+ [default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 128, in forward
234
+ [default2]:[rank2]: return self.act(gate_states) * up_states
235
+ [default2]:[rank2]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 256.00 MiB. GPU  has a total capacity of 79.33 GiB of which 101.94 MiB is free. Including non-PyTorch memory, this process has 79.22 GiB memory in use. Of the allocated memory 67.43 GiB is allocated by PyTorch, and 50.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
236
+ [default1]:[rank1]: Traceback (most recent call last):
237
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
238
+ [default1]:[rank1]: trainer.train(dataloader)
239
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
240
+ [default1]:[rank1]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
241
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
242
+ [default1]:[rank1]: outputs = self.pipeline_engine.train_batch_iter(
243
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
244
+ [default1]:[rank1]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
245
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
246
+ [default1]:[rank1]: output = model(**micro_batch)
247
+ [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
248
+ [default1]:[rank1]: return self._call_impl(*args, **kwargs)
249
+ [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
250
+ [default1]:[rank1]: return forward_call(*args, **kwargs)
251
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
252
+ [default1]:[rank1]: sharded_logits = self.model(
253
+ [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
254
+ [default1]:[rank1]: return self._call_impl(*args, **kwargs)
255
+ [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
256
+ [default1]:[rank1]: return forward_call(*args, **kwargs)
257
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
258
+ [default1]:[rank1]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
259
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
260
+ [default1]:[rank1]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
261
+ [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
262
+ [default1]:[rank1]: return self._call_impl(*args, **kwargs)
263
+ [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
264
+ [default1]:[rank1]: return forward_call(*args, **kwargs)
265
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
266
+ [default1]:[rank1]: output = self.pp_block(**new_kwargs)
267
+ [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
268
+ [default1]:[rank1]: return self._call_impl(*args, **kwargs)
269
+ [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
270
+ [default1]:[rank1]: return forward_call(*args, **kwargs)
271
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
272
+ [default1]:[rank1]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
273
+ [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
274
+ [default1]:[rank1]: return self._call_impl(*args, **kwargs)
275
+ [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
276
+ [default1]:[rank1]: return forward_call(*args, **kwargs)
277
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 172, in forward
278
+ [default1]:[rank1]: hidden_states = self.down_proj(self.split_silu_mul(merged_states))
279
+ [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
280
+ [default1]:[rank1]: return self._call_impl(*args, **kwargs)
281
+ [default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
282
+ [default1]:[rank1]: return forward_call(*args, **kwargs)
283
+ [default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 128, in forward
284
+ [default1]:[rank1]: return self.act(gate_states) * up_states
285
+ [default1]:[rank1]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 256.00 MiB. GPU  has a total capacity of 79.33 GiB of which 101.94 MiB is free. Including non-PyTorch memory, this process has 79.22 GiB memory in use. Of the allocated memory 67.43 GiB is allocated by PyTorch, and 50.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
286
+ [default4]:[rank4]: Traceback (most recent call last):
287
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
288
+ [default4]:[rank4]: trainer.train(dataloader)
289
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
290
+ [default4]:[rank4]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
291
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
292
+ [default4]:[rank4]: outputs = self.pipeline_engine.train_batch_iter(
293
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
294
+ [default4]:[rank4]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
295
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
296
+ [default4]:[rank4]: output = model(**micro_batch)
297
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
298
+ [default4]:[rank4]: return self._call_impl(*args, **kwargs)
299
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
300
+ [default4]:[rank4]: return forward_call(*args, **kwargs)
301
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
302
+ [default4]:[rank4]: sharded_logits = self.model(
303
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
304
+ [default4]:[rank4]: return self._call_impl(*args, **kwargs)
305
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
306
+ [default4]:[rank4]: return forward_call(*args, **kwargs)
307
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
308
+ [default4]:[rank4]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
309
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
310
+ [default4]:[rank4]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
311
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
312
+ [default4]:[rank4]: return self._call_impl(*args, **kwargs)
313
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
314
+ [default4]:[rank4]: return forward_call(*args, **kwargs)
315
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
316
+ [default4]:[rank4]: output = self.pp_block(**new_kwargs)
317
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
318
+ [default4]:[rank4]: return self._call_impl(*args, **kwargs)
319
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
320
+ [default4]:[rank4]: return forward_call(*args, **kwargs)
321
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
322
+ [default4]:[rank4]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
323
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
324
+ [default4]:[rank4]: return self._call_impl(*args, **kwargs)
325
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
326
+ [default4]:[rank4]: return forward_call(*args, **kwargs)
327
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 172, in forward
328
+ [default4]:[rank4]: hidden_states = self.down_proj(self.split_silu_mul(merged_states))
329
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
330
+ [default4]:[rank4]: return self._call_impl(*args, **kwargs)
331
+ [default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
332
+ [default4]:[rank4]: return forward_call(*args, **kwargs)
333
+ [default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 128, in forward
334
+ [default4]:[rank4]: return self.act(gate_states) * up_states
335
+ [default4]:[rank4]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 256.00 MiB. GPU  has a total capacity of 79.33 GiB of which 101.94 MiB is free. Including non-PyTorch memory, this process has 79.22 GiB memory in use. Of the allocated memory 67.43 GiB is allocated by PyTorch, and 50.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
336
+ [default7]:[rank7]: Traceback (most recent call last):
337
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
338
+ [default7]:[rank7]: trainer.train(dataloader)
339
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
340
+ [default7]:[rank7]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
341
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
342
+ [default7]:[rank7]: outputs = self.pipeline_engine.train_batch_iter(
343
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
344
+ [default7]:[rank7]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
345
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
346
+ [default7]:[rank7]: output = model(**micro_batch)
347
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
348
+ [default7]:[rank7]: return self._call_impl(*args, **kwargs)
349
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
350
+ [default7]:[rank7]: return forward_call(*args, **kwargs)
351
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
352
+ [default7]:[rank7]: sharded_logits = self.model(
353
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
354
+ [default7]:[rank7]: return self._call_impl(*args, **kwargs)
355
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
356
+ [default7]:[rank7]: return forward_call(*args, **kwargs)
357
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
358
+ [default7]:[rank7]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
359
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
360
+ [default7]:[rank7]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
361
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
362
+ [default7]:[rank7]: return self._call_impl(*args, **kwargs)
363
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
364
+ [default7]:[rank7]: return forward_call(*args, **kwargs)
365
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
366
+ [default7]:[rank7]: output = self.pp_block(**new_kwargs)
367
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
368
+ [default7]:[rank7]: return self._call_impl(*args, **kwargs)
369
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
370
+ [default7]:[rank7]: return forward_call(*args, **kwargs)
371
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
372
+ [default7]:[rank7]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
373
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
374
+ [default7]:[rank7]: return self._call_impl(*args, **kwargs)
375
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
376
+ [default7]:[rank7]: return forward_call(*args, **kwargs)
377
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 172, in forward
378
+ [default7]:[rank7]: hidden_states = self.down_proj(self.split_silu_mul(merged_states))
379
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
380
+ [default7]:[rank7]: return self._call_impl(*args, **kwargs)
381
+ [default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
382
+ [default7]:[rank7]: return forward_call(*args, **kwargs)
383
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 159, in forward
384
+ [default7]:[rank7]: return row_linear(
385
+ [default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 474, in row_linear
386
+ [default7]:[rank7]: out = F.linear(input, weight, bias)
387
+ [default7]:[rank7]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU  has a total capacity of 79.33 GiB of which 565.94 MiB is free. Including non-PyTorch memory, this process has 78.77 GiB memory in use. Of the allocated memory 67.68 GiB is allocated by PyTorch, and 50.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
388
+ [default6]:[rank6]: Traceback (most recent call last):
389
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
390
+ [default6]:[rank6]: trainer.train(dataloader)
391
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
392
+ [default6]:[rank6]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
393
+ [default0]:[rank0]: Traceback (most recent call last):
394
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
395
+ [default0]:[rank0]: trainer.train(dataloader)
396
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
397
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
398
+ [default6]:[rank6]: outputs = self.pipeline_engine.train_batch_iter(
399
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
400
+ [default6]:[rank6]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
401
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
402
+ [default0]:[rank0]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
403
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
404
+ [default6]:[rank6]: output = model(**micro_batch)
405
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
406
+ [default0]:[rank0]: outputs = self.pipeline_engine.train_batch_iter(
407
+ [default6]:[rank6]: return self._call_impl(*args, **kwargs)
408
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
409
+ [default6]:[rank6]: return forward_call(*args, **kwargs)
410
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
411
+ [default6]:[rank6]: sharded_logits = self.model(
412
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
413
+ [default0]:[rank0]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
414
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
415
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
416
+ [default0]:[rank0]: output = model(**micro_batch)
417
+ [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
418
+ [default6]:[rank6]: return self._call_impl(*args, **kwargs)
419
+ [default0]:[rank0]: return self._call_impl(*args, **kwargs)
420
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
421
+ [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
422
+ [default6]:[rank6]: return forward_call(*args, **kwargs)
423
+ [default0]:[rank0]: return forward_call(*args, **kwargs)
424
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
425
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
426
+ [default0]:[rank0]: sharded_logits = self.model(
427
+ [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
428
+ [default0]:[rank0]: return self._call_impl(*args, **kwargs)
429
+ [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
430
+ [default0]:[rank0]: return forward_call(*args, **kwargs)
431
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
432
+ [default6]:[rank6]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
433
+ [default0]:[rank0]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
434
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
435
+ [default6]:[rank6]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
436
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
437
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
438
+ [default0]:[rank0]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
439
+ [default6]:[rank6]: return self._call_impl(*args, **kwargs)
440
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
441
+ [default6]:[rank6]: return forward_call(*args, **kwargs)
442
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
443
+ [default6]:[rank6]: output = self.pp_block(**new_kwargs)
444
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
445
+ [default6]:[rank6]: return self._call_impl(*args, **kwargs)
446
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
447
+ [default6]:[rank6]: return forward_call(*args, **kwargs)
448
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
449
+ [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
450
+ [default0]:[rank0]: return self._call_impl(*args, **kwargs)
451
+ [default6]:[rank6]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
452
+ [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
453
+ [default0]:[rank0]: return forward_call(*args, **kwargs)
454
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
455
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
456
+ [default6]:[rank6]: return self._call_impl(*args, **kwargs)
457
+ [default0]:[rank0]: output = self.pp_block(**new_kwargs)
458
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
459
+ [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
460
+ [default0]:[rank0]: return self._call_impl(*args, **kwargs)
461
+ [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
462
+ [default0]:[rank0]: return forward_call(*args, **kwargs)
463
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
464
+ [default0]:[rank0]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
465
+ [default6]:[rank6]: return forward_call(*args, **kwargs)
466
+ [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
467
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 172, in forward
468
+ [default0]:[rank0]: return self._call_impl(*args, **kwargs)
469
+ [default6]:[rank6]: hidden_states = self.down_proj(self.split_silu_mul(merged_states))
470
+ [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
471
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
472
+ [default0]:[rank0]: return forward_call(*args, **kwargs)
473
+ [default6]:[rank6]: return self._call_impl(*args, **kwargs)
474
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 172, in forward
475
+ [default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
476
+ [default0]:[rank0]: hidden_states = self.down_proj(self.split_silu_mul(merged_states))
477
+ [default6]:[rank6]: return forward_call(*args, **kwargs)
478
+ [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
479
+ [default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 128, in forward
480
+ [default0]:[rank0]: return self._call_impl(*args, **kwargs)
481
+ [default6]:[rank6]: return self.act(gate_states) * up_states
482
+ [default6]:[rank6]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 256.00 MiB. GPU  has a total capacity of 79.33 GiB of which 101.94 MiB is free. Including non-PyTorch memory, this process has 79.22 GiB memory in use. Of the allocated memory 67.43 GiB is allocated by PyTorch, and 50.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
483
+ [default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
484
+ [default0]:[rank0]: return forward_call(*args, **kwargs)
485
+ [default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 128, in forward
486
+ [default0]:[rank0]: return self.act(gate_states) * up_states
487
+ [default0]:[rank0]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 256.00 MiB. GPU
488
+ [default3]:[rank3]: Traceback (most recent call last):
489
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
490
+ [default3]:[rank3]: trainer.train(dataloader)
491
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
492
+ [default3]:[rank3]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
493
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
494
+ [default3]:[rank3]: outputs = self.pipeline_engine.train_batch_iter(
495
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
496
+ [default5]:[rank5]: Traceback (most recent call last):
497
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
498
+ [default5]:[rank5]: trainer.train(dataloader)
499
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
500
+ [default5]:[rank5]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
501
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
502
+ [default3]:[rank3]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
503
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
504
+ [default3]:[rank3]: output = model(**micro_batch)
505
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
506
+ [default3]:[rank3]: return self._call_impl(*args, **kwargs)
507
+ [default5]:[rank5]: outputs = self.pipeline_engine.train_batch_iter(
508
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
509
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
510
+ [default3]:[rank3]: return forward_call(*args, **kwargs)
511
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
512
+ [default3]:[rank3]: sharded_logits = self.model(
513
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
514
+ [default5]:[rank5]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
515
+ [default3]:[rank3]: return self._call_impl(*args, **kwargs)
516
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
517
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
518
+ [default3]:[rank3]: return forward_call(*args, **kwargs)
519
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
520
+ [default3]:[rank3]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
521
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
522
+ [default3]:[rank3]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
523
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
524
+ [default3]:[rank3]: return self._call_impl(*args, **kwargs)
525
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
526
+ [default3]:[rank3]: return forward_call(*args, **kwargs)
527
+ [default5]:[rank5]: output = model(**micro_batch)
528
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
529
+ [default3]:[rank3]: output = self.pp_block(**new_kwargs)
530
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
531
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
532
+ [default5]:[rank5]: return self._call_impl(*args, **kwargs)
533
+ [default3]:[rank3]: return self._call_impl(*args, **kwargs)
534
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
535
+ [default5]:[rank5]: return forward_call(*args, **kwargs)
536
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
537
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
538
+ [default5]:[rank5]: sharded_logits = self.model(
539
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
540
+ [default5]:[rank5]: return self._call_impl(*args, **kwargs)
541
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
542
+ [default5]:[rank5]: return forward_call(*args, **kwargs)
543
+ [default3]:[rank3]: return forward_call(*args, **kwargs)
544
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
545
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
546
+ [default5]:[rank5]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
547
+ [default3]:[rank3]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
548
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
549
+ [default3]:[rank3]: return self._call_impl(*args, **kwargs)
550
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
551
+ [default3]:[rank3]: return forward_call(*args, **kwargs)
552
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
553
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 172, in forward
554
+ [default5]:[rank5]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
555
+ [default3]:[rank3]: hidden_states = self.down_proj(self.split_silu_mul(merged_states))
556
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
557
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
558
+ [default5]:[rank5]: return self._call_impl(*args, **kwargs)
559
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
560
+ [default3]:[rank3]: return self._call_impl(*args, **kwargs)
561
+ [default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
562
+ [default5]:[rank5]: return forward_call(*args, **kwargs)
563
+ [default3]:[rank3]: return forward_call(*args, **kwargs)
564
+ [default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 128, in forward
565
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
566
+ [default5]:[rank5]: output = self.pp_block(**new_kwargs)
567
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
568
+ [default5]:[rank5]: return self._call_impl(*args, **kwargs)
569
+ [default3]:[rank3]: return self.act(gate_states) * up_states
570
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
571
+ [default3]:[rank3]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 256.00 MiB. GPU  has a total capacity of 79.33 GiB of which 101.94 MiB is free. Including non-PyTorch memory, this process has 79.22 GiB memory in use. Of the allocated memory 67.43 GiB is allocated by PyTorch, and 50.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
572
+ [default5]:[rank5]: return forward_call(*args, **kwargs)
573
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
574
+ [default5]:[rank5]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
575
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
576
+ [default5]:[rank5]: return self._call_impl(*args, **kwargs)
577
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
578
+ [default5]:[rank5]: return forward_call(*args, **kwargs)
579
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 172, in forward
580
+ [default5]:[rank5]: hidden_states = self.down_proj(self.split_silu_mul(merged_states))
581
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
582
+ [default5]:[rank5]: return self._call_impl(*args, **kwargs)
583
+ [default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
584
+ [default5]:[rank5]: return forward_call(*args, **kwargs)
585
+ [default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 128, in forward
586
+ [default5]:[rank5]: return self.act(gate_states) * up_states
587
+ [default5]:[rank5]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 256.00 MiB. GPU  has a total capacity of 79.33 GiB of which 101.94 MiB is free. Including non-PyTorch memory, this process has 79.22 GiB memory in use. Of the allocated memory 67.43 GiB is allocated by PyTorch, and 50.47 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
588
+ E0703 22:45:21.130000 139726242240320 torch/distributed/elastic/multiprocessing/api.py:826] failed (exitcode: 1) local_rank: 0 (pid: 1029082) of binary: /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10
589
+ Traceback (most recent call last):
590
+ File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
591
+ sys.exit(main())
592
+ File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
593
+ return f(*args, **kwargs)
594
+ File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main
595
+ run(args)
596
+ File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run
597
+ elastic_launch(
598
+ File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__
599
+ return launch_agent(self._config, self._entrypoint, list(args))
600
+ File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 263, in launch_agent
601
+ raise ChildFailedError(
602
+ torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
603
+ ============================================================
604
+ /fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py FAILED
605
+ ------------------------------------------------------------
606
+ Failures:
607
+ [1]:
608
+ time : 2024-07-03_22:45:21
609
+ host : ip-26-0-161-178.ec2.internal
610
+ rank : 1 (local_rank: 1)
611
+ exitcode : 1 (pid: 1029083)
612
+ error_file: <N/A>
613
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
614
+ [2]:
615
+ time : 2024-07-03_22:45:21
616
+ host : ip-26-0-161-178.ec2.internal
617
+ rank : 2 (local_rank: 2)
618
+ exitcode : 1 (pid: 1029084)
619
+ error_file: <N/A>
620
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
621
+ [3]:
622
+ time : 2024-07-03_22:45:21
623
+ host : ip-26-0-161-178.ec2.internal
624
+ rank : 3 (local_rank: 3)
625
+ exitcode : 1 (pid: 1029085)
626
+ error_file: <N/A>
627
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
628
+ [4]:
629
+ time : 2024-07-03_22:45:21
630
+ host : ip-26-0-161-178.ec2.internal
631
+ rank : 4 (local_rank: 4)
632
+ exitcode : 1 (pid: 1029086)
633
+ error_file: <N/A>
634
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
635
+ [5]:
636
+ time : 2024-07-03_22:45:21
637
+ host : ip-26-0-161-178.ec2.internal
638
+ rank : 5 (local_rank: 5)
639
+ exitcode : 1 (pid: 1029087)
640
+ error_file: <N/A>
641
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
642
+ [6]:
643
+ time : 2024-07-03_22:45:21
644
+ host : ip-26-0-161-178.ec2.internal
645
+ rank : 6 (local_rank: 6)
646
+ exitcode : 1 (pid: 1029088)
647
+ error_file: <N/A>
648
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
649
+ [7]:
650
+ time : 2024-07-03_22:45:21
651
+ host : ip-26-0-161-178.ec2.internal
652
+ rank : 7 (local_rank: 7)
653
+ exitcode : 1 (pid: 1029089)
654
+ error_file: <N/A>
655
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
656
+ ------------------------------------------------------------
657
+ Root Cause (first observed failure):
658
+ [0]:
659
+ time : 2024-07-03_22:45:21
660
+ host : ip-26-0-161-178.ec2.internal
661
+ rank : 0 (local_rank: 0)
662
+ exitcode : 1 (pid: 1029082)
663
+ error_file: <N/A>
664
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
665
+ ============================================================
666
+ srun: error: ip-26-0-161-178: task 0: Exited with exit code 1
667
+ Consider using `hf_transfer` for faster uploads. This solution comes with some limitations. See https://huggingface.co/docs/huggingface_hub/hf_transfer for more details.
llama-1B/8_GPUS/dp-1_tp-8_pp-1_mbz-64/status.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ oom