nakanolab commited on
Commit
5e8c214
1 Parent(s): 560b8d8

Unit 1 of Deep Reinforcement Learning Course

Browse files
PPO-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1a89ce0066884b9d8f26df4e387191349122a87e318fb8b5a500809cc5e7b75
3
+ size 147307
PPO-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
PPO-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2ccc9e2dc0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2ccc9e2e50>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2ccc9e2ee0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2ccc9e2f70>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f2ccc9e6040>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f2ccc9e60d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2ccc9e6160>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2ccc9e61f0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f2ccc9e6280>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2ccc9e6310>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2ccc9e63a0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2ccc9e6430>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f2ccc9e13f0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1676540165997383475,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADBOTb5PRxY/hv4bPD20ur4HUgS+Z3gHPQAAAAAAAAAAbTsfPnZ4DrzjNlk7RXK3uSdelL1u26i6AACAPwAAgD9miGa+Md8cP5Yftz2kWc6+Zjj5vS5JCD0AAAAAAAAAAJq6rrxspO+74tdKPA5oBb4WIY47qsXoPAAAgD8AAIA/ZtRwva49kbquwJi3RM1VslKliLqMaLA2AACAPwAAgD9TTy++O4KpvJBXSToN7Lc4WMQTPsA8jrkAAIA/AACAP0Dz+j3Xzx67zgPcO/v8GrrAf4+8IvkFuwAAgD8AAIA/ADmEvcplqD9t6eG+swXJvvice714jFC+AAAAAAAAAADAJd89uILMu24dqrzn1t08q4RePTXGt70AAIA/AACAP83fgbyfgcu7O4fVPfB7Fz2rYg29fEa0PAAAgD8AAIA/s2xCPT0Of7vq5Jm7892NPOjkoTxFDnO9AACAPwAAgD8zS4M9pDBruaWShDppuiy1PmoTvM5onbkAAIA/AACAP5pFwz1FH6M+Opx+vdXv774iTI09OYLEvQAAAAAAAAAAQPHrPQwKJj5/Eoe9R2eIvl8pqrpaXR28AAAAAAAAAAAdBHq+/TvIPibGij7vxuu+/VL/u3aGCz0AAAAAAAAAAPMDqr2EQag+hQ23Pe6ou75IWMG80l4KPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVKRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7xzKUBVNcUCUhpRSlIwBbJRL/IwBdJRHQJ5c0xqO9391fZQoaAZoCWgPQwhzol2F1I1wQJSGlFKUaBVL42gWR0CeXPorFwT/dX2UKGgGaAloD0MIYd9OIsIRc0CUhpRSlGgVTQYBaBZHQJ5dukN4JNV1fZQoaAZoCWgPQwi3f2WlSQtxQJSGlFKUaBVL6WgWR0CeXcQ7cO9WdX2UKGgGaAloD0MITgte9NWPckCUhpRSlGgVS+RoFkdAnl3lo11nunV9lChoBmgJaA9DCDArFOm+s3FAlIaUUpRoFUu1aBZHQJ5d+dBjWkJ1fZQoaAZoCWgPQwh968N6oytzQJSGlFKUaBVL7mgWR0CeXgTisGPgdX2UKGgGaAloD0MIN/+vOnL1b0CUhpRSlGgVS7poFkdAnl47ulXRxHV9lChoBmgJaA9DCOG2tvA8I3NAlIaUUpRoFUvxaBZHQJ5ep55Z8rt1fZQoaAZoCWgPQwgLYqBrX59xQJSGlFKUaBVL92gWR0CeXvx9oexOdX2UKGgGaAloD0MI+mNam4avcUCUhpRSlGgVS9loFkdAnl9e+ZgG8nV9lChoBmgJaA9DCNycSgYAFXJAlIaUUpRoFUvcaBZHQJ5f6nTAnD11fZQoaAZoCWgPQwhihPBoY1BzQJSGlFKUaBVL8WgWR0CeYOPuXu3MdX2UKGgGaAloD0MI0xHAzWL7cECUhpRSlGgVTRsBaBZHQJ5hjpHI6sB1fZQoaAZoCWgPQwjFru3tFo1yQJSGlFKUaBVL1WgWR0CeYkvf0mMPdX2UKGgGaAloD0MIJqsi3KRWcUCUhpRSlGgVS7VoFkdAnmKOtW+49XV9lChoBmgJaA9DCGqIKvxZZnNAlIaUUpRoFUuxaBZHQJ5ixR77bcp1fZQoaAZoCWgPQwgKL8GpTwtyQJSGlFKUaBVL0WgWR0CeYxZWJaaDdX2UKGgGaAloD0MIK97IPLKXcUCUhpRSlGgVS/BoFkdAnmMyjQAuI3V9lChoBmgJaA9DCL+YLVkVK3NAlIaUUpRoFUvbaBZHQJ5jVXJYDDF1fZQoaAZoCWgPQwgcCTTYVIZvQJSGlFKUaBVL0WgWR0CeY16Gxlg/dX2UKGgGaAloD0MIzlFHx9Uyc0CUhpRSlGgVS8xoFkdAnmPr2QGOdXV9lChoBmgJaA9DCD18mSgCJ3FAlIaUUpRoFUvUaBZHQJ5kXwqiGnJ1fZQoaAZoCWgPQwjWq8jowMNwQJSGlFKUaBVLyGgWR0CeZQnX/YJ3dX2UKGgGaAloD0MI/Uy9blErcUCUhpRSlGgVTR0BaBZHQJ5lFj/dZaF1fZQoaAZoCWgPQwgFUfcBiHxyQJSGlFKUaBVL+WgWR0CeZbNwzch1dX2UKGgGaAloD0MIQUerWtLYcECUhpRSlGgVS6poFkdAnmXglSjxkXV9lChoBmgJaA9DCPorZK7MWXBAlIaUUpRoFUvKaBZHQJ5mDfvWpZR1fZQoaAZoCWgPQwins5PBUXJiQJSGlFKUaBVN6ANoFkdAnmcGiHqNZXV9lChoBmgJaA9DCPda0HtjbWJAlIaUUpRoFU3oA2gWR0CeZ1L/S6UadX2UKGgGaAloD0MIBmUaTa5jcECUhpRSlGgVS8doFkdAnmgWMbWEsnV9lChoBmgJaA9DCOQxA5WxTXFAlIaUUpRoFUvDaBZHQJ5oIhJRO1x1fZQoaAZoCWgPQwglk1M7Q7hwQJSGlFKUaBVL3GgWR0CeaD1QIldDdX2UKGgGaAloD0MIXOhKBOqEcUCUhpRSlGgVS+5oFkdAnmhDiwSrYHV9lChoBmgJaA9DCL2pSIWxxHBAlIaUUpRoFUvXaBZHQJ5oZk1/DtR1fZQoaAZoCWgPQwj9EBssnAJvQJSGlFKUaBVL0GgWR0CeaHYG+sYEdX2UKGgGaAloD0MIVOV7RmI5c0CUhpRSlGgVS/JoFkdAnmiLdWQwK3V9lChoBmgJaA9DCFjhlo+kvXBAlIaUUpRoFUu7aBZHQJ5o3PcBU711fZQoaAZoCWgPQwil3ehj/kdxQJSGlFKUaBVLymgWR0Ceac003wTedX2UKGgGaAloD0MIj8TL0/nqcECUhpRSlGgVS7FoFkdAnmnMkMTewnV9lChoBmgJaA9DCK0x6ITQ8XFAlIaUUpRoFUvkaBZHQJ5qVesxO+J1fZQoaAZoCWgPQwjAkxYuqz5xQJSGlFKUaBVLxWgWR0CeamcOby6MdX2UKGgGaAloD0MIcR+5NemocUCUhpRSlGgVS8BoFkdAnmpw0TDfnHV9lChoBmgJaA9DCCXLSSh9QHJAlIaUUpRoFU0eAWgWR0CeapOqebuudX2UKGgGaAloD0MIG9ZUFgUbcECUhpRSlGgVS8FoFkdAnmtwU1yeZ3V9lChoBmgJaA9DCD//PXitAHNAlIaUUpRoFUvxaBZHQJ5sRlmOEM91fZQoaAZoCWgPQwhPP6iLVCJyQJSGlFKUaBVLyGgWR0CebFkdFOO9dX2UKGgGaAloD0MIOurouJotcECUhpRSlGgVS7doFkdAnmxiZ4Oc2HV9lChoBmgJaA9DCCgNNQrJWXBAlIaUUpRoFUvAaBZHQJ5sbR6Ww/x1fZQoaAZoCWgPQwibdjHNtFVwQJSGlFKUaBVL0mgWR0CebIl+mWMTdX2UKGgGaAloD0MInkFD/0Shc0CUhpRSlGgVS9JoFkdAnmypntfG/HV9lChoBmgJaA9DCLxcxHciunBAlIaUUpRoFUvYaBZHQJ5sw6cRUWF1fZQoaAZoCWgPQwixprIo7HpwQJSGlFKUaBVLyGgWR0CebRKnNxEOdX2UKGgGaAloD0MIPITx07iRbkCUhpRSlGgVS85oFkdAnm4e6I3zc3V9lChoBmgJaA9DCE6c3O/QcHJAlIaUUpRoFUutaBZHQJ5uM2/BWPt1fZQoaAZoCWgPQwj36XjMwE9vQJSGlFKUaBVLv2gWR0CeblJ3gUDddX2UKGgGaAloD0MI61bPSW+Db0CUhpRSlGgVS79oFkdAnm5rgsK9f3V9lChoBmgJaA9DCEq2upwScHBAlIaUUpRoFUvXaBZHQJ5u5bX6InB1fZQoaAZoCWgPQwjUEFX4849xQJSGlFKUaBVLtGgWR0CecEI7eVLSdX2UKGgGaAloD0MIY0UNpuE5c0CUhpRSlGgVTTgBaBZHQJ5wo2zfJmx1fZQoaAZoCWgPQwjtLeV8sbBwQJSGlFKUaBVLwGgWR0CecLLdN34cdX2UKGgGaAloD0MIBygNNcokcUCUhpRSlGgVS7BoFkdAnnDHMQmNR3V9lChoBmgJaA9DCJGBPLv8xXFAlIaUUpRoFUu3aBZHQJ5w07nxJ/Z1fZQoaAZoCWgPQwjqCOBmcXBxQJSGlFKUaBVL9GgWR0CecPYgaFVUdX2UKGgGaAloD0MIPQ/uzpqOckCUhpRSlGgVS85oFkdAnnEDWbwz+HV9lChoBmgJaA9DCCXP9X14NnFAlIaUUpRoFUvfaBZHQJ5xkl6Z6Ut1fZQoaAZoCWgPQwgldm1vtzBxQJSGlFKUaBVL2GgWR0CecggbIcR2dX2UKGgGaAloD0MIqByTxf2nb0CUhpRSlGgVS7VoFkdAnnKYdU83dnV9lChoBmgJaA9DCJRPj20ZfHJAlIaUUpRoFU0dAWgWR0Cecuq3mV7hdX2UKGgGaAloD0MIOPbsucw4cECUhpRSlGgVS9FoFkdAnnMPqPfbbnV9lChoBmgJaA9DCDW3QlhNsHFAlIaUUpRoFUvQaBZHQJ5zZL127nR1fZQoaAZoCWgPQwi5bd+jfolyQJSGlFKUaBVL42gWR0Cec551/2CedX2UKGgGaAloD0MIQbYsXxfxcUCUhpRSlGgVS/poFkdAnnT36VMVUXV9lChoBmgJaA9DCEvoLonzhnFAlIaUUpRoFUuraBZHQJ51IQFs54p1fZQoaAZoCWgPQwjOxd/2BLxuQJSGlFKUaBVLuWgWR0CedT0dzXBhdX2UKGgGaAloD0MI7L/OTZsEcUCUhpRSlGgVS8JoFkdAnnVXYtg8bXV9lChoBmgJaA9DCLlt36O+IXBAlIaUUpRoFUvAaBZHQJ51dqSHM2Z1fZQoaAZoCWgPQwgLuOf500JwQJSGlFKUaBVL1WgWR0CeddqN6w+udX2UKGgGaAloD0MIVrq7zsZicUCUhpRSlGgVS/hoFkdAnnZR4dIXj3V9lChoBmgJaA9DCIDxDBr6C3FAlIaUUpRoFUvEaBZHQJ52Ylb/wRZ1fZQoaAZoCWgPQwhRvqCFBAluQJSGlFKUaBVLtWgWR0Cedw5jH4oJdX2UKGgGaAloD0MIXFmis4z8cUCUhpRSlGgVTQgBaBZHQJ53WAEt/Wl1fZQoaAZoCWgPQwiNgApH0DhyQJSGlFKUaBVL2WgWR0Ced2F6Rhc8dX2UKGgGaAloD0MIcy1agPbbcECUhpRSlGgVS7ZoFkdAnndqwIMSb3V9lChoBmgJaA9DCDpa1ZJOenBAlIaUUpRoFUuvaBZHQJ536/xlQMx1fZQoaAZoCWgPQwgHlbiOcWBxQJSGlFKUaBVL8GgWR0CeeVSXMQmNdX2UKGgGaAloD0MIngsjvegTckCUhpRSlGgVS8ZoFkdAnnoYVZcLSnV9lChoBmgJaA9DCP64/fLJ83FAlIaUUpRoFUvOaBZHQJ56J+pfhMt1fZQoaAZoCWgPQwjo24KleklyQJSGlFKUaBVNHgFoFkdAnno9UbT+enV9lChoBmgJaA9DCFAb1enAnXBAlIaUUpRoFUvIaBZHQJ56Q+7lJYl1fZQoaAZoCWgPQwiDiqpf6d5yQJSGlFKUaBVLz2gWR0CeeoYISlFddX2UKGgGaAloD0MIiNf1C3ZWc0CUhpRSlGgVS9NoFkdAnnq9+9allHV9lChoBmgJaA9DCG+3JAfs+HFAlIaUUpRoFUu1aBZHQJ58AF6iTMd1fZQoaAZoCWgPQwhkz57LFHpwQJSGlFKUaBVLwmgWR0CefEhpxm03dX2UKGgGaAloD0MIFoVdFP2BckCUhpRSlGgVTQMBaBZHQJ584mnfl6t1fZQoaAZoCWgPQwjyKJXwBKxwQJSGlFKUaBVLyGgWR0CefRJiiItUdX2UKGgGaAloD0MIfA4sRwgHc0CUhpRSlGgVS/loFkdAnn10nssxwnV9lChoBmgJaA9DCPLTuDc/QnBAlIaUUpRoFUvwaBZHQJ59jX4CZF51fZQoaAZoCWgPQwjpQxfU9zxzQJSGlFKUaBVNHAFoFkdAnn2c5wOvuHV9lChoBmgJaA9DCOS7lLqkqnFAlIaUUpRoFUvkaBZHQJ5/RYigTRJ1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 380,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
PPO-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6151e3d707def8c382d33dba02881240d47bb517027fb7cc2abbefe1579d474
3
+ size 87929
PPO-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ebf02600dff47ebc735080fb779753c425a3fcc5b1cdf350e5798598a236e44
3
+ size 43393
PPO-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
PPO-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 269.21 +/- 12.64
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2ccc9e2dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2ccc9e2e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2ccc9e2ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2ccc9e2f70>", "_build": "<function ActorCriticPolicy._build at 0x7f2ccc9e6040>", "forward": "<function ActorCriticPolicy.forward at 0x7f2ccc9e60d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2ccc9e6160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2ccc9e61f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2ccc9e6280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2ccc9e6310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2ccc9e63a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2ccc9e6430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2ccc9e13f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676540165997383475, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADBOTb5PRxY/hv4bPD20ur4HUgS+Z3gHPQAAAAAAAAAAbTsfPnZ4DrzjNlk7RXK3uSdelL1u26i6AACAPwAAgD9miGa+Md8cP5Yftz2kWc6+Zjj5vS5JCD0AAAAAAAAAAJq6rrxspO+74tdKPA5oBb4WIY47qsXoPAAAgD8AAIA/ZtRwva49kbquwJi3RM1VslKliLqMaLA2AACAPwAAgD9TTy++O4KpvJBXSToN7Lc4WMQTPsA8jrkAAIA/AACAP0Dz+j3Xzx67zgPcO/v8GrrAf4+8IvkFuwAAgD8AAIA/ADmEvcplqD9t6eG+swXJvvice714jFC+AAAAAAAAAADAJd89uILMu24dqrzn1t08q4RePTXGt70AAIA/AACAP83fgbyfgcu7O4fVPfB7Fz2rYg29fEa0PAAAgD8AAIA/s2xCPT0Of7vq5Jm7892NPOjkoTxFDnO9AACAPwAAgD8zS4M9pDBruaWShDppuiy1PmoTvM5onbkAAIA/AACAP5pFwz1FH6M+Opx+vdXv774iTI09OYLEvQAAAAAAAAAAQPHrPQwKJj5/Eoe9R2eIvl8pqrpaXR28AAAAAAAAAAAdBHq+/TvIPibGij7vxuu+/VL/u3aGCz0AAAAAAAAAAPMDqr2EQag+hQ23Pe6ou75IWMG80l4KPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7xzKUBVNcUCUhpRSlIwBbJRL/IwBdJRHQJ5c0xqO9391fZQoaAZoCWgPQwhzol2F1I1wQJSGlFKUaBVL42gWR0CeXPorFwT/dX2UKGgGaAloD0MIYd9OIsIRc0CUhpRSlGgVTQYBaBZHQJ5dukN4JNV1fZQoaAZoCWgPQwi3f2WlSQtxQJSGlFKUaBVL6WgWR0CeXcQ7cO9WdX2UKGgGaAloD0MITgte9NWPckCUhpRSlGgVS+RoFkdAnl3lo11nunV9lChoBmgJaA9DCDArFOm+s3FAlIaUUpRoFUu1aBZHQJ5d+dBjWkJ1fZQoaAZoCWgPQwh968N6oytzQJSGlFKUaBVL7mgWR0CeXgTisGPgdX2UKGgGaAloD0MIN/+vOnL1b0CUhpRSlGgVS7poFkdAnl47ulXRxHV9lChoBmgJaA9DCOG2tvA8I3NAlIaUUpRoFUvxaBZHQJ5ep55Z8rt1fZQoaAZoCWgPQwgLYqBrX59xQJSGlFKUaBVL92gWR0CeXvx9oexOdX2UKGgGaAloD0MI+mNam4avcUCUhpRSlGgVS9loFkdAnl9e+ZgG8nV9lChoBmgJaA9DCNycSgYAFXJAlIaUUpRoFUvcaBZHQJ5f6nTAnD11fZQoaAZoCWgPQwhihPBoY1BzQJSGlFKUaBVL8WgWR0CeYOPuXu3MdX2UKGgGaAloD0MI0xHAzWL7cECUhpRSlGgVTRsBaBZHQJ5hjpHI6sB1fZQoaAZoCWgPQwjFru3tFo1yQJSGlFKUaBVL1WgWR0CeYkvf0mMPdX2UKGgGaAloD0MIJqsi3KRWcUCUhpRSlGgVS7VoFkdAnmKOtW+49XV9lChoBmgJaA9DCGqIKvxZZnNAlIaUUpRoFUuxaBZHQJ5ixR77bcp1fZQoaAZoCWgPQwgKL8GpTwtyQJSGlFKUaBVL0WgWR0CeYxZWJaaDdX2UKGgGaAloD0MIK97IPLKXcUCUhpRSlGgVS/BoFkdAnmMyjQAuI3V9lChoBmgJaA9DCL+YLVkVK3NAlIaUUpRoFUvbaBZHQJ5jVXJYDDF1fZQoaAZoCWgPQwgcCTTYVIZvQJSGlFKUaBVL0WgWR0CeY16Gxlg/dX2UKGgGaAloD0MIzlFHx9Uyc0CUhpRSlGgVS8xoFkdAnmPr2QGOdXV9lChoBmgJaA9DCD18mSgCJ3FAlIaUUpRoFUvUaBZHQJ5kXwqiGnJ1fZQoaAZoCWgPQwjWq8jowMNwQJSGlFKUaBVLyGgWR0CeZQnX/YJ3dX2UKGgGaAloD0MI/Uy9blErcUCUhpRSlGgVTR0BaBZHQJ5lFj/dZaF1fZQoaAZoCWgPQwgFUfcBiHxyQJSGlFKUaBVL+WgWR0CeZbNwzch1dX2UKGgGaAloD0MIQUerWtLYcECUhpRSlGgVS6poFkdAnmXglSjxkXV9lChoBmgJaA9DCPorZK7MWXBAlIaUUpRoFUvKaBZHQJ5mDfvWpZR1fZQoaAZoCWgPQwins5PBUXJiQJSGlFKUaBVN6ANoFkdAnmcGiHqNZXV9lChoBmgJaA9DCPda0HtjbWJAlIaUUpRoFU3oA2gWR0CeZ1L/S6UadX2UKGgGaAloD0MIBmUaTa5jcECUhpRSlGgVS8doFkdAnmgWMbWEsnV9lChoBmgJaA9DCOQxA5WxTXFAlIaUUpRoFUvDaBZHQJ5oIhJRO1x1fZQoaAZoCWgPQwglk1M7Q7hwQJSGlFKUaBVL3GgWR0CeaD1QIldDdX2UKGgGaAloD0MIXOhKBOqEcUCUhpRSlGgVS+5oFkdAnmhDiwSrYHV9lChoBmgJaA9DCL2pSIWxxHBAlIaUUpRoFUvXaBZHQJ5oZk1/DtR1fZQoaAZoCWgPQwj9EBssnAJvQJSGlFKUaBVL0GgWR0CeaHYG+sYEdX2UKGgGaAloD0MIVOV7RmI5c0CUhpRSlGgVS/JoFkdAnmiLdWQwK3V9lChoBmgJaA9DCFjhlo+kvXBAlIaUUpRoFUu7aBZHQJ5o3PcBU711fZQoaAZoCWgPQwil3ehj/kdxQJSGlFKUaBVLymgWR0Ceac003wTedX2UKGgGaAloD0MIj8TL0/nqcECUhpRSlGgVS7FoFkdAnmnMkMTewnV9lChoBmgJaA9DCK0x6ITQ8XFAlIaUUpRoFUvkaBZHQJ5qVesxO+J1fZQoaAZoCWgPQwjAkxYuqz5xQJSGlFKUaBVLxWgWR0CeamcOby6MdX2UKGgGaAloD0MIcR+5NemocUCUhpRSlGgVS8BoFkdAnmpw0TDfnHV9lChoBmgJaA9DCCXLSSh9QHJAlIaUUpRoFU0eAWgWR0CeapOqebuudX2UKGgGaAloD0MIG9ZUFgUbcECUhpRSlGgVS8FoFkdAnmtwU1yeZ3V9lChoBmgJaA9DCD//PXitAHNAlIaUUpRoFUvxaBZHQJ5sRlmOEM91fZQoaAZoCWgPQwhPP6iLVCJyQJSGlFKUaBVLyGgWR0CebFkdFOO9dX2UKGgGaAloD0MIOurouJotcECUhpRSlGgVS7doFkdAnmxiZ4Oc2HV9lChoBmgJaA9DCCgNNQrJWXBAlIaUUpRoFUvAaBZHQJ5sbR6Ww/x1fZQoaAZoCWgPQwibdjHNtFVwQJSGlFKUaBVL0mgWR0CebIl+mWMTdX2UKGgGaAloD0MInkFD/0Shc0CUhpRSlGgVS9JoFkdAnmypntfG/HV9lChoBmgJaA9DCLxcxHciunBAlIaUUpRoFUvYaBZHQJ5sw6cRUWF1fZQoaAZoCWgPQwixprIo7HpwQJSGlFKUaBVLyGgWR0CebRKnNxEOdX2UKGgGaAloD0MIPITx07iRbkCUhpRSlGgVS85oFkdAnm4e6I3zc3V9lChoBmgJaA9DCE6c3O/QcHJAlIaUUpRoFUutaBZHQJ5uM2/BWPt1fZQoaAZoCWgPQwj36XjMwE9vQJSGlFKUaBVLv2gWR0CeblJ3gUDddX2UKGgGaAloD0MI61bPSW+Db0CUhpRSlGgVS79oFkdAnm5rgsK9f3V9lChoBmgJaA9DCEq2upwScHBAlIaUUpRoFUvXaBZHQJ5u5bX6InB1fZQoaAZoCWgPQwjUEFX4849xQJSGlFKUaBVLtGgWR0CecEI7eVLSdX2UKGgGaAloD0MIY0UNpuE5c0CUhpRSlGgVTTgBaBZHQJ5wo2zfJmx1fZQoaAZoCWgPQwjtLeV8sbBwQJSGlFKUaBVLwGgWR0CecLLdN34cdX2UKGgGaAloD0MIBygNNcokcUCUhpRSlGgVS7BoFkdAnnDHMQmNR3V9lChoBmgJaA9DCJGBPLv8xXFAlIaUUpRoFUu3aBZHQJ5w07nxJ/Z1fZQoaAZoCWgPQwjqCOBmcXBxQJSGlFKUaBVL9GgWR0CecPYgaFVUdX2UKGgGaAloD0MIPQ/uzpqOckCUhpRSlGgVS85oFkdAnnEDWbwz+HV9lChoBmgJaA9DCCXP9X14NnFAlIaUUpRoFUvfaBZHQJ5xkl6Z6Ut1fZQoaAZoCWgPQwgldm1vtzBxQJSGlFKUaBVL2GgWR0CecggbIcR2dX2UKGgGaAloD0MIqByTxf2nb0CUhpRSlGgVS7VoFkdAnnKYdU83dnV9lChoBmgJaA9DCJRPj20ZfHJAlIaUUpRoFU0dAWgWR0Cecuq3mV7hdX2UKGgGaAloD0MIOPbsucw4cECUhpRSlGgVS9FoFkdAnnMPqPfbbnV9lChoBmgJaA9DCDW3QlhNsHFAlIaUUpRoFUvQaBZHQJ5zZL127nR1fZQoaAZoCWgPQwi5bd+jfolyQJSGlFKUaBVL42gWR0Cec551/2CedX2UKGgGaAloD0MIQbYsXxfxcUCUhpRSlGgVS/poFkdAnnT36VMVUXV9lChoBmgJaA9DCEvoLonzhnFAlIaUUpRoFUuraBZHQJ51IQFs54p1fZQoaAZoCWgPQwjOxd/2BLxuQJSGlFKUaBVLuWgWR0CedT0dzXBhdX2UKGgGaAloD0MI7L/OTZsEcUCUhpRSlGgVS8JoFkdAnnVXYtg8bXV9lChoBmgJaA9DCLlt36O+IXBAlIaUUpRoFUvAaBZHQJ51dqSHM2Z1fZQoaAZoCWgPQwgLuOf500JwQJSGlFKUaBVL1WgWR0CeddqN6w+udX2UKGgGaAloD0MIVrq7zsZicUCUhpRSlGgVS/hoFkdAnnZR4dIXj3V9lChoBmgJaA9DCIDxDBr6C3FAlIaUUpRoFUvEaBZHQJ52Ylb/wRZ1fZQoaAZoCWgPQwhRvqCFBAluQJSGlFKUaBVLtWgWR0Cedw5jH4oJdX2UKGgGaAloD0MIXFmis4z8cUCUhpRSlGgVTQgBaBZHQJ53WAEt/Wl1fZQoaAZoCWgPQwiNgApH0DhyQJSGlFKUaBVL2WgWR0Ced2F6Rhc8dX2UKGgGaAloD0MIcy1agPbbcECUhpRSlGgVS7ZoFkdAnndqwIMSb3V9lChoBmgJaA9DCDpa1ZJOenBAlIaUUpRoFUuvaBZHQJ536/xlQMx1fZQoaAZoCWgPQwgHlbiOcWBxQJSGlFKUaBVL8GgWR0CeeVSXMQmNdX2UKGgGaAloD0MIngsjvegTckCUhpRSlGgVS8ZoFkdAnnoYVZcLSnV9lChoBmgJaA9DCP64/fLJ83FAlIaUUpRoFUvOaBZHQJ56J+pfhMt1fZQoaAZoCWgPQwjo24KleklyQJSGlFKUaBVNHgFoFkdAnno9UbT+enV9lChoBmgJaA9DCFAb1enAnXBAlIaUUpRoFUvIaBZHQJ56Q+7lJYl1fZQoaAZoCWgPQwiDiqpf6d5yQJSGlFKUaBVLz2gWR0CeeoYISlFddX2UKGgGaAloD0MIiNf1C3ZWc0CUhpRSlGgVS9NoFkdAnnq9+9allHV9lChoBmgJaA9DCG+3JAfs+HFAlIaUUpRoFUu1aBZHQJ58AF6iTMd1fZQoaAZoCWgPQwhkz57LFHpwQJSGlFKUaBVLwmgWR0CefEhpxm03dX2UKGgGaAloD0MIFoVdFP2BckCUhpRSlGgVTQMBaBZHQJ584mnfl6t1fZQoaAZoCWgPQwjyKJXwBKxwQJSGlFKUaBVLyGgWR0CefRJiiItUdX2UKGgGaAloD0MIfA4sRwgHc0CUhpRSlGgVS/loFkdAnn10nssxwnV9lChoBmgJaA9DCPLTuDc/QnBAlIaUUpRoFUvwaBZHQJ59jX4CZF51fZQoaAZoCWgPQwjpQxfU9zxzQJSGlFKUaBVNHAFoFkdAnn2c5wOvuHV9lChoBmgJaA9DCOS7lLqkqnFAlIaUUpRoFUvkaBZHQJ5/RYigTRJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 380, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (210 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 269.2138574272069, "std_reward": 12.635685414399246, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-16T10:10:21.463212"}