nailarais1
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,70 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
base_model:
|
6 |
+
- google/efficientnet-b0
|
7 |
+
---
|
8 |
+
|
9 |
+
EfficientNet-B0 Model for Image Classification
|
10 |
+
|
11 |
+
This repository contains an EfficientNet-B0 model trained on a custom dataset for image classification tasks.
|
12 |
+
|
13 |
+
Model Details
|
14 |
+
|
15 |
+
- Architecture: EfficientNet-B0
|
16 |
+
- Input Size: 224x224 RGB images
|
17 |
+
- Number of Classes: 10
|
18 |
+
- Dataset: Custom dataset with 10 categories
|
19 |
+
- Optimizer: AdamW
|
20 |
+
- Loss Function: CrossEntropyLoss
|
21 |
+
- Validation Accuracy: 85.3%
|
22 |
+
- Device Used for Training: CUDA (GPU)
|
23 |
+
|
24 |
+
Usage
|
25 |
+
|
26 |
+
Load the Model
|
27 |
+
To load the model, use the following code:
|
28 |
+
|
29 |
+
```
|
30 |
+
import torch
|
31 |
+
|
32 |
+
Load model and metadata
|
33 |
+
model = torch.load("efficientnet-results-and-model.pth", map_location="cpu")
|
34 |
+
|
35 |
+
Access class-to-index mapping
|
36 |
+
|
37 |
+
class_to_idx = model['class_to_idx']
|
38 |
+
|
39 |
+
Load the state dictionary
|
40 |
+
state_dict = model['model_state_dict']
|
41 |
+
|
42 |
+
Reconstruct EfficientNet-B0
|
43 |
+
from torchvision.models import efficientnet_b0
|
44 |
+
model = efficientnet_b0(weights=None)
|
45 |
+
model.classifier[1] = torch.nn.Linear(model.classifier[1].in_features, len(class_to_idx))
|
46 |
+
model.load_state_dict(state_dict)
|
47 |
+
model.eval()
|
48 |
+
|
49 |
+
print("Model successfully loaded!")
|
50 |
+
|
51 |
+
Training Details
|
52 |
+
Learning Rate: 0.001
|
53 |
+
Batch Size: 32
|
54 |
+
Epochs: 3
|
55 |
+
Augmentations:
|
56 |
+
Random Resized Crop
|
57 |
+
Horizontal Flip
|
58 |
+
Color Jitter
|
59 |
+
Normalization (mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225])
|
60 |
+
|
61 |
+
Files in this Repository
|
62 |
+
best_model.pth: Trained model weights
|
63 |
+
efficientnet.json: Model configuration file
|
64 |
+
README.md: Documentation for this model
|
65 |
+
efficientnet.txt: Training Results
|
66 |
+
|
67 |
+
Acknowledgments
|
68 |
+
Framework: PyTorch
|
69 |
+
Pretrained Weights: TorchVision
|
70 |
+
Training: Mixed precision using torch.cuda.amp for efficient training on GPU.
|