Add first model
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -3.67 +/- 28.18
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4dd7dfb440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4dd7dfb4d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4dd7dfb560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4dd7dfb5f0>", "_build": "<function ActorCriticPolicy._build at 0x7f4dd7dfb680>", "forward": "<function ActorCriticPolicy.forward at 0x7f4dd7dfb710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4dd7dfb7a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4dd7dfb830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4dd7dfb8c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4dd7dfb950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4dd7dfb9e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4dd7dcc5a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAjTvUvw0Oq7YcwoFtP2g5fhzwHc75w3BZXgKTdYlyw5Gon152tu/x2aoClxVmzH6WQ34155V5ypu4aJScLHsasDvrgh4yNhSQECl8SYhTQ2vIG1tCy0ewQNViXUrCsyD8/ueCunNVaOeFfZEnI/vd2JNev4S5ngJLN0PHKIDic5xpfCA211RRayBPAMvQTKiz/v1Rls/PfNYZUmZ2wS96pC3m+QDpTVzMPuPrBR9S028VofWeS7HAoIdbluXF9mVzTyTA+x2td2OmxfHaVq6n5M63q/ZSDyoO2PB+eBbdwwJSl/s97LuTNm2KGthWdkaxO3RZU4HptJ21LW2gKmb9NsTrZS6EX+W4AP1QU9G1JRuU8cWCy8Td5HxudxUwxzil/nkXClWehoeBIAR1VdUQpK4QmOaADQVHBNn5Rdc6hfEBkYETVqWisGfXOOt8nvVMPt9OE9ZIbk78S4wEkK2rb2wuQoVLURpsSjk9/mBJ9MiPXW8lBiTJz7m5Ii+03zi4jswwsi9uX9yXvLvXsp87Rlx4NQZGYSllxl/9HVs785cjJSxlTuNf22CB+gM9z/ENc4GBWL2zhAoFh99+SgYa/IsyIVH6zuuNz06V7hDnpZobRQMRspFQ43uehWtyH3dZKAfSEfEe2bovE2rK0n9zVbYj7aWSLDFbo6y4/QI0PjzDOT+lfWWRyvDtwwEEFgffklF44ajGqyv27cdWWXnLo3K7SjkxJqNiZAUKiYYfyeMfZTTmXEDDSB2uSZp2xvlCuTgCGThDF7FCRRph5cUCErerjZ7ZRuUROxKGhBpDOvBcD/uORrht2ssQqCisUGDtSRgQfk1pmKuYy4U9MOBk1QyzAHtQ5oj40RaSpSS4QnFUXJowxNen32vNrg80L1MlJ5wk/ertccasHz9nn/cvnrI1Vee1W8IuJh1KZQ4NfG5lvmeB1nosr7EedSBa5rUdeu/7QgwaJ6pLWL8qdFmQefF2rHAvTEJunT2qE9/y8oDyDefUvpq8e7I0KxP9aSUNMEF9i6INhfiNANFqEsSTCY/BNaHUn1VZPQQcoYdznr03lgrZm7gNtjEtZvhg6FbORZK02Ag4bmmcWi4CNwYZNW/ZWt5ukijUva1PEVAB41kgR43gMDCVsAXEqiRPAXyvM3jndLN16upjtFd6iuMV0kSPyQO+uNZZms2DUGdJ3oMsSskxB+jlaawLGHYiOwS4iHpTGOk7IBVgPIkqyk9yqngfv1OS4FDEp159RjQfrcxDplLKJArUl/aZ19I0dyaIQJ2vFF/2aRm8NH/T/NtvoWMTN5BzGGg6xhA+GAykA9alPfurJxGPJ3HeJGPD7Y/yPJQf1q0lU2hS9zAqj5Z1TlsZze5btBphfnS9F6aazz8VW40M3eYnvrYetJt+xaA/jnbY/+WZbMJmS+mqV+TWwFF+QWqM3C/RaEdLQ2eiUH8i7Pfu0Dijh/bB+kj0gfdNoW2SEZxo71sxGM0xgCEzY21gTZG+5cWOWbxlRlakFn3V72yTBWkyq8393Ht+tTZSTi/Ylk3+SAjzvcClrytm0mhgUnZrXZGBK6fiDprf7+0z+nSmzSUFUFzbloxvI7nSd4vC1eAHfZftCje7dDiEG5KZVw8/nuhqgOlsAeLzY3M6r3I7duFryghwhGWywO580sNLbWraEQnHd6Gb4y5ZhEdv4QYHzpcOPrm73jbcjrfjUKhvd8f5FV9wdXT004qwKp/0LWFZESPanKEb8h0oLKKPkzBhw7nwAj2WBsr6SzavBEc9OH1l/iAipII6ckkd89s2EQtHv6vVF3ikGqaJQ4glvRaSIcah8GYcJXM5fCefRKs0old1znoXco/AWBmQMZxWKCk97xMdRwRanqShXxcSdyV9r6ApefO9G7naBZvSu3CGfsBYyOaX3PY93C6dpbv8QnxZWWSw19E2q1hio/UoXKf7znDyrFDQ96poNEA7i0HYkyNMUWcbySCsJofG7ZPFrJyjRy/32EYzSCzEvZxjUHmGIPeZCxuhaj31kf97dnzJ5BdbcOhhO+/7aRGHZXFHmfl/ob2+fYsAFQeDXFV60A7Fnua5EvNbABisH6+cfERJqH6KqXtU1DZJKeWgb87ZkCU3iNfIhG1+R2CrJH2t08ukQH+aXTSTzZAtZii0ZYAOAwIOF6ypjtWz++QTLlfUQmgse/1RMuvohR3gJrgp9NejrVJ0UD4OW3mobWLsUQ0tvXZlix//yBQevpfdSPMbSikTyszBEH+wH4Y4J+ux+VKkYFXHno8tz1Cn7oA5UCn2R+0hbBjX9O2UcOYMJDo4ZSrRRQRmAapUzGdxcYiJcRMkEn0eDMc8PYdci6zHQIENiBAzz2ASIpbprUwO+pWipmY5b6gU1agSqnbd3x2H2NhOG23LsaoPUXzfHHv8CqQpfMJqQV0SIGWDwVKq16+YfDnznBZRxfvGUverYdAhLLr6357ckfp6ZpZHZ5n9juA9v1AEk1lnL2VZA0B6fmh+OGuROk5j2oBPlkOTzu4wMmcDHQhcaGO+IAj+Q6PQHjdYcbTCGp8nds6mxOjCE1coikmEGkgwJ9+axlM+fJCM+6EZQboJKVhR+fLRMD4TLgLggPp+SMBcfSXfau/XcQuPM/HF7x5JfpVi83niJ4pZsAyVKQiIA6R3FF+xe2qj6oyPdVV6mwV5m38lszaltMUkHVxWt6odfPyS2ZBEqHES30Ocsll7gKEiHOFr7q3FgnqUYdpF8uHm+VgpAXx9psIzAynnVql4ros10YGl4dCYOEYa7tj6O6Oom4ilcgLhy1CLIGpCLkMg+HNqCoB6sO4BFH7mJEGzAe4jLfK32eKMedkm6wCbIOsh0s8ixk37buPNGnlwvXH9P6UbLjtWkbJq9GYkbGfKbj4LRFlBtb3mmx1vwdC5VojTF4uWdJg1Q8kFp/U/R1D2O7z6ty2fvQd+1dJOzy4rKq1aTveS38HMPqsYb5ObYwUrY8SABKrPmLSbf5rmi/LUDjHe4gE0Yz4+VVJuNRz+wxXo/qdpsMFTOO/EiRDgSuvAaymNNrJEXXKaG02/2vKlZL9YMeQpPGVHrq12SLwnEb0FHpyWXrtw8h74rF1xmZXib0YeJAAsnfgh7s6m/BNT6o6q/82UhOpmqD5EnR/AV5fAIaRqubJWlBKLzO9T5xwuR5pxSyTHdncoYiLFSobH7wByjOdSDXLScvy4cWOvu6NjPhyWpIkUymzBHxr38udq+wQNrpslV7tkmN9lVXF24yWoNtOfl28aU7hc6qLGuxCAkMNefmLqJTINMdAxfKve16Yeo8BKbKp5zDwpEzJb49h2YzsWlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNQAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652232347.8450012, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEoubb4SEZ48qqodO4LfjblbYSi+prFHugAAgD8AAIA/pjVEvo94RD97H9+8AhSYviRnHz6mZFm9AAAAAAAAAAAmw14+wfSIvGtWTTp4PoC4EADvvSizdrkAAIA/AACAP8bOaT7sYL089Qw4O1Py0TkDek8+UtVzugAAgD8AAIA/2sO2vRQmmbrNces7EZcRN4Bd+DrmSQk2AACAPwAAgD9qAnm+kmHrPH2GgTqmCTe5jViDvgBfu7kAAIA/AACAP4P1uz5GKIw+ns69PWr//73CXAq+LhBjPgAAAAAAAAAAZv8NPe8MJz/ZYi695Gd4vjan4r0LvbS8AAAAAAAAAADNw/c8rueGukDRXLlvBYG1yLQ1O7WMezgAAIA/AACAP+62v77IrZY7g8AdPBd4MLeAmSa8XSUYugAAgD8AAIA/TY0wvcMJerpjnVc7w8WjNboF+Tm9FJQ0AACAPwAAgD8NDmI+wwIaPzXlsr5V5XC+w4IOvWiIpr4AAAAAAAAAAMA3lL1ID426E2xSO7F5iTjm89667af7uQAAgD8AAIA/AOE0vl8eOT/HIKY9T92FvtVWMj46Kma8AAAAAAAAAAAArCS+ORCKP+/MBj01VZW+ig+SvbsZST4AAAAAAAAAAADgEDofjd+593w2PQAM3rgxhMk75gXXtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXcDLDBt/YUCUhpRSlIwBbJRN6AOMAXSUR0C35KjohY/3dX2UKGgGaAloD0MI4Qoo1NPnNECUhpRSlGgVTSwBaBZHQLfkwvYvnKZ1fZQoaAZoCWgPQwje5SK+k41gQJSGlFKUaBVN6ANoFkdAt+Z/6ciGFnV9lChoBmgJaA9DCN8YAoBjLlpAlIaUUpRoFU3oA2gWR0C35urFGXoldX2UKGgGaAloD0MIADlhwuhUZkCUhpRSlGgVTeUCaBZHQLfnm4etCAt1fZQoaAZoCWgPQwiynlp9dU1mQJSGlFKUaBVN6ANoFkdAt+fSiQDFInV9lChoBmgJaA9DCJD5gEDnWWBAlIaUUpRoFU3oA2gWR0C36SHwG4ZudX2UKGgGaAloD0MIAHDs2XOJHUCUhpRSlGgVS/1oFkdAt+rCeyzHCHV9lChoBmgJaA9DCL+7lSU691lAlIaUUpRoFU3oA2gWR0C37FPuXu3MdX2UKGgGaAloD0MI71hsk4omMcCUhpRSlGgVTUsBaBZHQLfss4s3AEd1fZQoaAZoCWgPQwj12QHXFdlgQJSGlFKUaBVN6ANoFkdAt+3A0XP7enV9lChoBmgJaA9DCFvOpbiqOlZAlIaUUpRoFU3oA2gWR0C37eFAqur7dX2UKGgGaAloD0MIhgFLrmKlWECUhpRSlGgVTegDaBZHQLfurcB2fTV1fZQoaAZoCWgPQwi5OZUMANtYQJSGlFKUaBVN6ANoFkdAt+7EFKTSs3V9lChoBmgJaA9DCMQGCydp/1hAlIaUUpRoFU3oA2gWR0C38FbaZhKEdX2UKGgGaAloD0MIXtiarTxyY0CUhpRSlGgVTegDaBZHQLfx9OZ9d/t1fZQoaAZoCWgPQwghPxu5bvVlQJSGlFKUaBVN6ANoFkdAt/KiyMUAUHV9lChoBmgJaA9DCPXb14Fz0jlAlIaUUpRoFU0QAWgWR0C382664Ds/dX2UKGgGaAloD0MI3PEmv0UQWECUhpRSlGgVTegDaBZHQLf1CRkEs8R1fZQoaAZoCWgPQwgep+hILntMQJSGlFKUaBVN6ANoFkdAt/b9Tn7pFHV9lChoBmgJaA9DCII3pFEB+WBAlIaUUpRoFU3oA2gWR0C39x6dMCcPdX2UKGgGaAloD0MIut3LfXL2VkCUhpRSlGgVTegDaBZHQLf69qpcX3x1fZQoaAZoCWgPQwjqkQa3tZNcQJSGlFKUaBVN6ANoFkdAt/s8dtEXtXV9lChoBmgJaA9DCBl2GJN+/GBAlIaUUpRoFU3oA2gWR0C3/Rfyf+S9dX2UKGgGaAloD0MIJhjONcxmY0CUhpRSlGgVTegDaBZHQLf/THkLhJl1fZQoaAZoCWgPQwg/yLJg4jpXQJSGlFKUaBVN6ANoFkdAuAFEsBhhIHV9lChoBmgJaA9DCIgtPZrqOVpAlIaUUpRoFU3oA2gWR0C4AbcgZCOWdX2UKGgGaAloD0MIdlH0wMdoW0CUhpRSlGgVTegDaBZHQLgC6k4m1IB1fZQoaAZoCWgPQwiOHr+36QVbQJSGlFKUaBVN6ANoFkdAuAMMmeDnNnV9lChoBmgJaA9DCDY9KChFslhAlIaUUpRoFU3oA2gWR0C4CSyKvV3EdX2UKGgGaAloD0MIRDUlWYc+UkCUhpRSlGgVTegDaBZHQLgLVTNdJJ51fZQoaAZoCWgPQwjxEpz6wCpjQJSGlFKUaBVN6ANoFkdAuA1lWp6yB3V9lChoBmgJaA9DCHOFd7kIkmNAlIaUUpRoFU3oA2gWR0C4DjygwoLHdX2UKGgGaAloD0MIstmR6jt3JMCUhpRSlGgVTW0BaBZHQLgOe86V+ql1fZQoaAZoCWgPQwjjw+xl22xhQJSGlFKUaBVN6ANoFkdAuA8qNS619nV9lChoBmgJaA9DCLCp86j48ldAlIaUUpRoFU3oA2gWR0C4EKJgTh5xdX2UKGgGaAloD0MIibfOv11/WUCUhpRSlGgVTegDaBZHQLgSbeVcD8t1fZQoaAZoCWgPQwinP/uRoi1kQJSGlFKUaBVN6ANoFkdAuBKNxGUfP3V9lChoBmgJaA9DCCtQi8HDM2NAlIaUUpRoFU3oA2gWR0C4Fj5cxCY1dX2UKGgGaAloD0MIOSf20L6DZECUhpRSlGgVTegDaBZHQLgWgSbH6uZ1fZQoaAZoCWgPQwh3hqktdYg2wJSGlFKUaBVL9mgWR0C4F8lDfFaTdX2UKGgGaAloD0MI9GqA0lBhWkCUhpRSlGgVTegDaBZHQLgYMjFQ2uR1fZQoaAZoCWgPQwgvibMiapBZQJSGlFKUaBVN6ANoFkdAuBo0kY4yXXV9lChoBmgJaA9DCPrVHCCYgFtAlIaUUpRoFU3oA2gWR0C4HFW8Zk08dX2UKGgGaAloD0MIqOMxA5VxTECUhpRSlGgVTegDaBZHQLgdcJf6XSl1fZQoaAZoCWgPQwga3qzB+4ZcQJSGlFKUaBVN6ANoFkdAuB2Rd3SrpHV9lChoBmgJaA9DCGx4eqUsI1lAlIaUUpRoFU3oA2gWR0C4HmsENe+mdX2UKGgGaAloD0MI16IFaFtXV0CUhpRSlGgVTegDaBZHQLggX/XGwRp1fZQoaAZoCWgPQwiFKF/QQqowQJSGlFKUaBVN6ANoFkdAuCJq6VdHD3V9lChoBmgJaA9DCPse9dcrAWRAlIaUUpRoFU3oA2gWR0C4I0EmtyPudX2UKGgGaAloD0MIQZqxaDpmYkCUhpRSlGgVTegDaBZHQLgjgJ4jbBZ1fZQoaAZoCWgPQwj2RNeFHzlgQJSGlFKUaBVN6ANoFkdAuCQznyNGVnV9lChoBmgJaA9DCAH6ff/mqFVAlIaUUpRoFU3oA2gWR0C4JbfyGzrvdX2UKGgGaAloD0MI6dFUT+Z9X0CUhpRSlGgVTegDaBZHQLgnm6vaDf51fZQoaAZoCWgPQwjkTBO2n8piQJSGlFKUaBVN6ANoFkdAuCuVPykKu3V9lChoBmgJaA9DCNeGinH+BWNAlIaUUpRoFU3oA2gWR0C4K9prxiG4dX2UKGgGaAloD0MIdLSqJR01IsCUhpRSlGgVTVABaBZHQLgtLFB6a9d1fZQoaAZoCWgPQwhyameYWjBgQJSGlFKUaBVN6ANoFkdAuC0yYu01InV9lChoBmgJaA9DCBIWFXE6cFhAlIaUUpRoFU3oA2gWR0C4LY7LyMDPdX2UKGgGaAloD0MIjo8WZwzsX0CUhpRSlGgVTegDaBZHQLgvJYKpkwx1fZQoaAZoCWgPQwjGFRdHZWFjQJSGlFKUaBVN6ANoFkdAuDDlyeZof3V9lChoBmgJaA9DCJNWfEPhoF1AlIaUUpRoFU3oA2gWR0C4MdOoDPnkdX2UKGgGaAloD0MIqifzj77pDECUhpRSlGgVTUsBaBZHQLgx4Pz4DcN1fZQoaAZoCWgPQwjPLt/6MHNlQJSGlFKUaBVN6ANoFkdAuDHtreqJdnV9lChoBmgJaA9DCOFgb2LIO2BAlIaUUpRoFU3oA2gWR0C4MpTj/+85dX2UKGgGaAloD0MI9l0R/G99X0CUhpRSlGgVTegDaBZHQLg5M5CF9KF1fZQoaAZoCWgPQwjmdcQhG3FeQJSGlFKUaBVN6ANoFkdAuDrZKqXF+HV9lChoBmgJaA9DCFCop49At2FAlIaUUpRoFU3oA2gWR0C4O3eWWyC4dX2UKGgGaAloD0MI1e3sKw+UXUCUhpRSlGgVTegDaBZHQLg7pWWQfZF1fZQoaAZoCWgPQwiSIFwBBflgQJSGlFKUaBVN6ANoFkdAuDwrGHYYi3V9lChoBmgJaA9DCCXP9X04DlpAlIaUUpRoFU3oA2gWR0C4Pv3SBshxdX2UKGgGaAloD0MI7wBPWjhLYECUhpRSlGgVTegDaBZHQLhC5Wy1NQF1fZQoaAZoCWgPQwg6BmSvdyteQJSGlFKUaBVN6ANoFkdAuESAy31BdHV9lChoBmgJaA9DCKx0d50N019AlIaUUpRoFU3oA2gWR0C4RIbFOwgUdX2UKGgGaAloD0MIU1xV9l3+YUCUhpRSlGgVTegDaBZHQLhE5zGPxQV1fZQoaAZoCWgPQwiEnPf/cU46QJSGlFKUaBVNEQFoFkdAuETypvP1MHV9lChoBmgJaA9DCCRCI9i4Rk1AlIaUUpRoFU3oA2gWR0C4RqmuLaVVdX2UKGgGaAloD0MI1lOrr64fYUCUhpRSlGgVTegDaBZHQLhIkP07KaJ1fZQoaAZoCWgPQwidnKG4480gQJSGlFKUaBVNCQFoFkdAuEmLQswta3V9lChoBmgJaA9DCITTghd9aVZAlIaUUpRoFU3oA2gWR0C4SY9UKiPAdX2UKGgGaAloD0MITDRIwdNqYUCUhpRSlGgVTegDaBZHQLhJnZWJaaF1fZQoaAZoCWgPQwgE5iFTPoQtQJSGlFKUaBVN6ANoFkdAuEmrNIK+jHV9lChoBmgJaA9DCE33OqkvyFxAlIaUUpRoFU3oA2gWR0C4SlO+23KCdX2UKGgGaAloD0MIn82qz9W8X0CUhpRSlGgVTegDaBZHQLhL8PUrkKh1fZQoaAZoCWgPQwg5KjdRS2FaQJSGlFKUaBVN6ANoFkdAuE2wqur6tXV9lChoBmgJaA9DCO1imuleJUVAlIaUUpRoFU0EAWgWR0C4TfCDRMN+dX2UKGgGaAloD0MI1LX2PlWoWECUhpRSlGgVTegDaBZHQLhOZAUL2Ht1fZQoaAZoCWgPQwjxKQDGM49aQJSGlFKUaBVN6ANoFkdAuE6YyIpH7XV9lChoBmgJaA9DCI1iuaXVeVpAlIaUUpRoFU3oA2gWR0C4TyKgyuZDdX2UKGgGaAloD0MItyizQSYNWUCUhpRSlGgVTegDaBZHQLhV+dbgTAZ1fZQoaAZoCWgPQwhoP1JEBuphQJSGlFKUaBVN6ANoFkdAuFe4cDKYA3V9lChoBmgJaA9DCEWhZd0/N15AlIaUUpRoFU3oA2gWR0C4WDGnGbTddX2UKGgGaAloD0MIw35PrFMrX0CUhpRSlGgVTegDaBZHQLhYPxDst051fZQoaAZoCWgPQwjb/SrAd5JfQJSGlFKUaBVN6ANoFkdAuFo4rPMSsnV9lChoBmgJaA9DCEURUrezs11AlIaUUpRoFU3oA2gWR0C4XIFCw8nvdX2UKGgGaAloD0MIVDcXf9tbYUCUhpRSlGgVTegDaBZHQLhdoPbfxc51fZQoaAZoCWgPQwgCvAUSFP9bQJSGlFKUaBVN6ANoFkdAuF2xeTmnwXV9lChoBmgJaA9DCBoZ5C5CIGBAlIaUUpRoFU3oA2gWR0C4XcEbkwN9dX2UKGgGaAloD0MIaXOc24RjJUCUhpRSlGgVTRMBaBZHQLhdyiUxEfF1fZQoaAZoCWgPQwhHPq946sNXQJSGlFKUaBVN6ANoFkdAuF5+CEpRXXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1da8400535e50316504a6c9d770bb023ae0b9b8dce151b8abc55c4aa0a191877
|
3 |
+
size 147713
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f4dd7dfb440>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4dd7dfb4d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4dd7dfb560>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4dd7dfb5f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f4dd7dfb680>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f4dd7dfb710>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4dd7dfb7a0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f4dd7dfb830>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4dd7dfb8c0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4dd7dfb950>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4dd7dfb9e0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f4dd7dcc5a0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAjTvUvw0Oq7YcwoFtP2g5fhzwHc75w3BZXgKTdYlyw5Gon152tu/x2aoClxVmzH6WQ34155V5ypu4aJScLHsasDvrgh4yNhSQECl8SYhTQ2vIG1tCy0ewQNViXUrCsyD8/ueCunNVaOeFfZEnI/vd2JNev4S5ngJLN0PHKIDic5xpfCA211RRayBPAMvQTKiz/v1Rls/PfNYZUmZ2wS96pC3m+QDpTVzMPuPrBR9S028VofWeS7HAoIdbluXF9mVzTyTA+x2td2OmxfHaVq6n5M63q/ZSDyoO2PB+eBbdwwJSl/s97LuTNm2KGthWdkaxO3RZU4HptJ21LW2gKmb9NsTrZS6EX+W4AP1QU9G1JRuU8cWCy8Td5HxudxUwxzil/nkXClWehoeBIAR1VdUQpK4QmOaADQVHBNn5Rdc6hfEBkYETVqWisGfXOOt8nvVMPt9OE9ZIbk78S4wEkK2rb2wuQoVLURpsSjk9/mBJ9MiPXW8lBiTJz7m5Ii+03zi4jswwsi9uX9yXvLvXsp87Rlx4NQZGYSllxl/9HVs785cjJSxlTuNf22CB+gM9z/ENc4GBWL2zhAoFh99+SgYa/IsyIVH6zuuNz06V7hDnpZobRQMRspFQ43uehWtyH3dZKAfSEfEe2bovE2rK0n9zVbYj7aWSLDFbo6y4/QI0PjzDOT+lfWWRyvDtwwEEFgffklF44ajGqyv27cdWWXnLo3K7SjkxJqNiZAUKiYYfyeMfZTTmXEDDSB2uSZp2xvlCuTgCGThDF7FCRRph5cUCErerjZ7ZRuUROxKGhBpDOvBcD/uORrht2ssQqCisUGDtSRgQfk1pmKuYy4U9MOBk1QyzAHtQ5oj40RaSpSS4QnFUXJowxNen32vNrg80L1MlJ5wk/ertccasHz9nn/cvnrI1Vee1W8IuJh1KZQ4NfG5lvmeB1nosr7EedSBa5rUdeu/7QgwaJ6pLWL8qdFmQefF2rHAvTEJunT2qE9/y8oDyDefUvpq8e7I0KxP9aSUNMEF9i6INhfiNANFqEsSTCY/BNaHUn1VZPQQcoYdznr03lgrZm7gNtjEtZvhg6FbORZK02Ag4bmmcWi4CNwYZNW/ZWt5ukijUva1PEVAB41kgR43gMDCVsAXEqiRPAXyvM3jndLN16upjtFd6iuMV0kSPyQO+uNZZms2DUGdJ3oMsSskxB+jlaawLGHYiOwS4iHpTGOk7IBVgPIkqyk9yqngfv1OS4FDEp159RjQfrcxDplLKJArUl/aZ19I0dyaIQJ2vFF/2aRm8NH/T/NtvoWMTN5BzGGg6xhA+GAykA9alPfurJxGPJ3HeJGPD7Y/yPJQf1q0lU2hS9zAqj5Z1TlsZze5btBphfnS9F6aazz8VW40M3eYnvrYetJt+xaA/jnbY/+WZbMJmS+mqV+TWwFF+QWqM3C/RaEdLQ2eiUH8i7Pfu0Dijh/bB+kj0gfdNoW2SEZxo71sxGM0xgCEzY21gTZG+5cWOWbxlRlakFn3V72yTBWkyq8393Ht+tTZSTi/Ylk3+SAjzvcClrytm0mhgUnZrXZGBK6fiDprf7+0z+nSmzSUFUFzbloxvI7nSd4vC1eAHfZftCje7dDiEG5KZVw8/nuhqgOlsAeLzY3M6r3I7duFryghwhGWywO580sNLbWraEQnHd6Gb4y5ZhEdv4QYHzpcOPrm73jbcjrfjUKhvd8f5FV9wdXT004qwKp/0LWFZESPanKEb8h0oLKKPkzBhw7nwAj2WBsr6SzavBEc9OH1l/iAipII6ckkd89s2EQtHv6vVF3ikGqaJQ4glvRaSIcah8GYcJXM5fCefRKs0old1znoXco/AWBmQMZxWKCk97xMdRwRanqShXxcSdyV9r6ApefO9G7naBZvSu3CGfsBYyOaX3PY93C6dpbv8QnxZWWSw19E2q1hio/UoXKf7znDyrFDQ96poNEA7i0HYkyNMUWcbySCsJofG7ZPFrJyjRy/32EYzSCzEvZxjUHmGIPeZCxuhaj31kf97dnzJ5BdbcOhhO+/7aRGHZXFHmfl/ob2+fYsAFQeDXFV60A7Fnua5EvNbABisH6+cfERJqH6KqXtU1DZJKeWgb87ZkCU3iNfIhG1+R2CrJH2t08ukQH+aXTSTzZAtZii0ZYAOAwIOF6ypjtWz++QTLlfUQmgse/1RMuvohR3gJrgp9NejrVJ0UD4OW3mobWLsUQ0tvXZlix//yBQevpfdSPMbSikTyszBEH+wH4Y4J+ux+VKkYFXHno8tz1Cn7oA5UCn2R+0hbBjX9O2UcOYMJDo4ZSrRRQRmAapUzGdxcYiJcRMkEn0eDMc8PYdci6zHQIENiBAzz2ASIpbprUwO+pWipmY5b6gU1agSqnbd3x2H2NhOG23LsaoPUXzfHHv8CqQpfMJqQV0SIGWDwVKq16+YfDnznBZRxfvGUverYdAhLLr6357ckfp6ZpZHZ5n9juA9v1AEk1lnL2VZA0B6fmh+OGuROk5j2oBPlkOTzu4wMmcDHQhcaGO+IAj+Q6PQHjdYcbTCGp8nds6mxOjCE1coikmEGkgwJ9+axlM+fJCM+6EZQboJKVhR+fLRMD4TLgLggPp+SMBcfSXfau/XcQuPM/HF7x5JfpVi83niJ4pZsAyVKQiIA6R3FF+xe2qj6oyPdVV6mwV5m38lszaltMUkHVxWt6odfPyS2ZBEqHES30Ocsll7gKEiHOFr7q3FgnqUYdpF8uHm+VgpAXx9psIzAynnVql4ros10YGl4dCYOEYa7tj6O6Oom4ilcgLhy1CLIGpCLkMg+HNqCoB6sO4BFH7mJEGzAe4jLfK32eKMedkm6wCbIOsh0s8ixk37buPNGnlwvXH9P6UbLjtWkbJq9GYkbGfKbj4LRFlBtb3mmx1vwdC5VojTF4uWdJg1Q8kFp/U/R1D2O7z6ty2fvQd+1dJOzy4rKq1aTveS38HMPqsYb5ObYwUrY8SABKrPmLSbf5rmi/LUDjHe4gE0Yz4+VVJuNRz+wxXo/qdpsMFTOO/EiRDgSuvAaymNNrJEXXKaG02/2vKlZL9YMeQpPGVHrq12SLwnEb0FHpyWXrtw8h74rF1xmZXib0YeJAAsnfgh7s6m/BNT6o6q/82UhOpmqD5EnR/AV5fAIaRqubJWlBKLzO9T5xwuR5pxSyTHdncoYiLFSobH7wByjOdSDXLScvy4cWOvu6NjPhyWpIkUymzBHxr38udq+wQNrpslV7tkmN9lVXF24yWoNtOfl28aU7hc6qLGuxCAkMNefmLqJTINMdAxfKve16Yeo8BKbKp5zDwpEzJb49h2YzsWlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNQAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": "RandomState(MT19937)"
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652232347.8450012,
|
51 |
+
"learning_rate": 0.0001,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEoubb4SEZ48qqodO4LfjblbYSi+prFHugAAgD8AAIA/pjVEvo94RD97H9+8AhSYviRnHz6mZFm9AAAAAAAAAAAmw14+wfSIvGtWTTp4PoC4EADvvSizdrkAAIA/AACAP8bOaT7sYL089Qw4O1Py0TkDek8+UtVzugAAgD8AAIA/2sO2vRQmmbrNces7EZcRN4Bd+DrmSQk2AACAPwAAgD9qAnm+kmHrPH2GgTqmCTe5jViDvgBfu7kAAIA/AACAP4P1uz5GKIw+ns69PWr//73CXAq+LhBjPgAAAAAAAAAAZv8NPe8MJz/ZYi695Gd4vjan4r0LvbS8AAAAAAAAAADNw/c8rueGukDRXLlvBYG1yLQ1O7WMezgAAIA/AACAP+62v77IrZY7g8AdPBd4MLeAmSa8XSUYugAAgD8AAIA/TY0wvcMJerpjnVc7w8WjNboF+Tm9FJQ0AACAPwAAgD8NDmI+wwIaPzXlsr5V5XC+w4IOvWiIpr4AAAAAAAAAAMA3lL1ID426E2xSO7F5iTjm89667af7uQAAgD8AAIA/AOE0vl8eOT/HIKY9T92FvtVWMj46Kma8AAAAAAAAAAAArCS+ORCKP+/MBj01VZW+ig+SvbsZST4AAAAAAAAAAADgEDofjd+593w2PQAM3rgxhMk75gXXtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXcDLDBt/YUCUhpRSlIwBbJRN6AOMAXSUR0C35KjohY/3dX2UKGgGaAloD0MI4Qoo1NPnNECUhpRSlGgVTSwBaBZHQLfkwvYvnKZ1fZQoaAZoCWgPQwje5SK+k41gQJSGlFKUaBVN6ANoFkdAt+Z/6ciGFnV9lChoBmgJaA9DCN8YAoBjLlpAlIaUUpRoFU3oA2gWR0C35urFGXoldX2UKGgGaAloD0MIADlhwuhUZkCUhpRSlGgVTeUCaBZHQLfnm4etCAt1fZQoaAZoCWgPQwiynlp9dU1mQJSGlFKUaBVN6ANoFkdAt+fSiQDFInV9lChoBmgJaA9DCJD5gEDnWWBAlIaUUpRoFU3oA2gWR0C36SHwG4ZudX2UKGgGaAloD0MIAHDs2XOJHUCUhpRSlGgVS/1oFkdAt+rCeyzHCHV9lChoBmgJaA9DCL+7lSU691lAlIaUUpRoFU3oA2gWR0C37FPuXu3MdX2UKGgGaAloD0MI71hsk4omMcCUhpRSlGgVTUsBaBZHQLfss4s3AEd1fZQoaAZoCWgPQwj12QHXFdlgQJSGlFKUaBVN6ANoFkdAt+3A0XP7enV9lChoBmgJaA9DCFvOpbiqOlZAlIaUUpRoFU3oA2gWR0C37eFAqur7dX2UKGgGaAloD0MIhgFLrmKlWECUhpRSlGgVTegDaBZHQLfurcB2fTV1fZQoaAZoCWgPQwi5OZUMANtYQJSGlFKUaBVN6ANoFkdAt+7EFKTSs3V9lChoBmgJaA9DCMQGCydp/1hAlIaUUpRoFU3oA2gWR0C38FbaZhKEdX2UKGgGaAloD0MIXtiarTxyY0CUhpRSlGgVTegDaBZHQLfx9OZ9d/t1fZQoaAZoCWgPQwghPxu5bvVlQJSGlFKUaBVN6ANoFkdAt/KiyMUAUHV9lChoBmgJaA9DCPXb14Fz0jlAlIaUUpRoFU0QAWgWR0C382664Ds/dX2UKGgGaAloD0MI3PEmv0UQWECUhpRSlGgVTegDaBZHQLf1CRkEs8R1fZQoaAZoCWgPQwgep+hILntMQJSGlFKUaBVN6ANoFkdAt/b9Tn7pFHV9lChoBmgJaA9DCII3pFEB+WBAlIaUUpRoFU3oA2gWR0C39x6dMCcPdX2UKGgGaAloD0MIut3LfXL2VkCUhpRSlGgVTegDaBZHQLf69qpcX3x1fZQoaAZoCWgPQwjqkQa3tZNcQJSGlFKUaBVN6ANoFkdAt/s8dtEXtXV9lChoBmgJaA9DCBl2GJN+/GBAlIaUUpRoFU3oA2gWR0C3/Rfyf+S9dX2UKGgGaAloD0MIJhjONcxmY0CUhpRSlGgVTegDaBZHQLf/THkLhJl1fZQoaAZoCWgPQwg/yLJg4jpXQJSGlFKUaBVN6ANoFkdAuAFEsBhhIHV9lChoBmgJaA9DCIgtPZrqOVpAlIaUUpRoFU3oA2gWR0C4AbcgZCOWdX2UKGgGaAloD0MIdlH0wMdoW0CUhpRSlGgVTegDaBZHQLgC6k4m1IB1fZQoaAZoCWgPQwiOHr+36QVbQJSGlFKUaBVN6ANoFkdAuAMMmeDnNnV9lChoBmgJaA9DCDY9KChFslhAlIaUUpRoFU3oA2gWR0C4CSyKvV3EdX2UKGgGaAloD0MIRDUlWYc+UkCUhpRSlGgVTegDaBZHQLgLVTNdJJ51fZQoaAZoCWgPQwjxEpz6wCpjQJSGlFKUaBVN6ANoFkdAuA1lWp6yB3V9lChoBmgJaA9DCHOFd7kIkmNAlIaUUpRoFU3oA2gWR0C4DjygwoLHdX2UKGgGaAloD0MIstmR6jt3JMCUhpRSlGgVTW0BaBZHQLgOe86V+ql1fZQoaAZoCWgPQwjjw+xl22xhQJSGlFKUaBVN6ANoFkdAuA8qNS619nV9lChoBmgJaA9DCLCp86j48ldAlIaUUpRoFU3oA2gWR0C4EKJgTh5xdX2UKGgGaAloD0MIibfOv11/WUCUhpRSlGgVTegDaBZHQLgSbeVcD8t1fZQoaAZoCWgPQwinP/uRoi1kQJSGlFKUaBVN6ANoFkdAuBKNxGUfP3V9lChoBmgJaA9DCCtQi8HDM2NAlIaUUpRoFU3oA2gWR0C4Fj5cxCY1dX2UKGgGaAloD0MIOSf20L6DZECUhpRSlGgVTegDaBZHQLgWgSbH6uZ1fZQoaAZoCWgPQwh3hqktdYg2wJSGlFKUaBVL9mgWR0C4F8lDfFaTdX2UKGgGaAloD0MI9GqA0lBhWkCUhpRSlGgVTegDaBZHQLgYMjFQ2uR1fZQoaAZoCWgPQwgvibMiapBZQJSGlFKUaBVN6ANoFkdAuBo0kY4yXXV9lChoBmgJaA9DCPrVHCCYgFtAlIaUUpRoFU3oA2gWR0C4HFW8Zk08dX2UKGgGaAloD0MIqOMxA5VxTECUhpRSlGgVTegDaBZHQLgdcJf6XSl1fZQoaAZoCWgPQwga3qzB+4ZcQJSGlFKUaBVN6ANoFkdAuB2Rd3SrpHV9lChoBmgJaA9DCGx4eqUsI1lAlIaUUpRoFU3oA2gWR0C4HmsENe+mdX2UKGgGaAloD0MI16IFaFtXV0CUhpRSlGgVTegDaBZHQLggX/XGwRp1fZQoaAZoCWgPQwiFKF/QQqowQJSGlFKUaBVN6ANoFkdAuCJq6VdHD3V9lChoBmgJaA9DCPse9dcrAWRAlIaUUpRoFU3oA2gWR0C4I0EmtyPudX2UKGgGaAloD0MIQZqxaDpmYkCUhpRSlGgVTegDaBZHQLgjgJ4jbBZ1fZQoaAZoCWgPQwj2RNeFHzlgQJSGlFKUaBVN6ANoFkdAuCQznyNGVnV9lChoBmgJaA9DCAH6ff/mqFVAlIaUUpRoFU3oA2gWR0C4JbfyGzrvdX2UKGgGaAloD0MI6dFUT+Z9X0CUhpRSlGgVTegDaBZHQLgnm6vaDf51fZQoaAZoCWgPQwjkTBO2n8piQJSGlFKUaBVN6ANoFkdAuCuVPykKu3V9lChoBmgJaA9DCNeGinH+BWNAlIaUUpRoFU3oA2gWR0C4K9prxiG4dX2UKGgGaAloD0MIdLSqJR01IsCUhpRSlGgVTVABaBZHQLgtLFB6a9d1fZQoaAZoCWgPQwhyameYWjBgQJSGlFKUaBVN6ANoFkdAuC0yYu01InV9lChoBmgJaA9DCBIWFXE6cFhAlIaUUpRoFU3oA2gWR0C4LY7LyMDPdX2UKGgGaAloD0MIjo8WZwzsX0CUhpRSlGgVTegDaBZHQLgvJYKpkwx1fZQoaAZoCWgPQwjGFRdHZWFjQJSGlFKUaBVN6ANoFkdAuDDlyeZof3V9lChoBmgJaA9DCJNWfEPhoF1AlIaUUpRoFU3oA2gWR0C4MdOoDPnkdX2UKGgGaAloD0MIqifzj77pDECUhpRSlGgVTUsBaBZHQLgx4Pz4DcN1fZQoaAZoCWgPQwjPLt/6MHNlQJSGlFKUaBVN6ANoFkdAuDHtreqJdnV9lChoBmgJaA9DCOFgb2LIO2BAlIaUUpRoFU3oA2gWR0C4MpTj/+85dX2UKGgGaAloD0MI9l0R/G99X0CUhpRSlGgVTegDaBZHQLg5M5CF9KF1fZQoaAZoCWgPQwjmdcQhG3FeQJSGlFKUaBVN6ANoFkdAuDrZKqXF+HV9lChoBmgJaA9DCFCop49At2FAlIaUUpRoFU3oA2gWR0C4O3eWWyC4dX2UKGgGaAloD0MI1e3sKw+UXUCUhpRSlGgVTegDaBZHQLg7pWWQfZF1fZQoaAZoCWgPQwiSIFwBBflgQJSGlFKUaBVN6ANoFkdAuDwrGHYYi3V9lChoBmgJaA9DCCXP9X04DlpAlIaUUpRoFU3oA2gWR0C4Pv3SBshxdX2UKGgGaAloD0MI7wBPWjhLYECUhpRSlGgVTegDaBZHQLhC5Wy1NQF1fZQoaAZoCWgPQwg6BmSvdyteQJSGlFKUaBVN6ANoFkdAuESAy31BdHV9lChoBmgJaA9DCKx0d50N019AlIaUUpRoFU3oA2gWR0C4RIbFOwgUdX2UKGgGaAloD0MIU1xV9l3+YUCUhpRSlGgVTegDaBZHQLhE5zGPxQV1fZQoaAZoCWgPQwiEnPf/cU46QJSGlFKUaBVNEQFoFkdAuETypvP1MHV9lChoBmgJaA9DCCRCI9i4Rk1AlIaUUpRoFU3oA2gWR0C4RqmuLaVVdX2UKGgGaAloD0MI1lOrr64fYUCUhpRSlGgVTegDaBZHQLhIkP07KaJ1fZQoaAZoCWgPQwidnKG4480gQJSGlFKUaBVNCQFoFkdAuEmLQswta3V9lChoBmgJaA9DCITTghd9aVZAlIaUUpRoFU3oA2gWR0C4SY9UKiPAdX2UKGgGaAloD0MITDRIwdNqYUCUhpRSlGgVTegDaBZHQLhJnZWJaaF1fZQoaAZoCWgPQwgE5iFTPoQtQJSGlFKUaBVN6ANoFkdAuEmrNIK+jHV9lChoBmgJaA9DCE33OqkvyFxAlIaUUpRoFU3oA2gWR0C4SlO+23KCdX2UKGgGaAloD0MIn82qz9W8X0CUhpRSlGgVTegDaBZHQLhL8PUrkKh1fZQoaAZoCWgPQwg5KjdRS2FaQJSGlFKUaBVN6ANoFkdAuE2wqur6tXV9lChoBmgJaA9DCO1imuleJUVAlIaUUpRoFU0EAWgWR0C4TfCDRMN+dX2UKGgGaAloD0MI1LX2PlWoWECUhpRSlGgVTegDaBZHQLhOZAUL2Ht1fZQoaAZoCWgPQwjxKQDGM49aQJSGlFKUaBVN6ANoFkdAuE6YyIpH7XV9lChoBmgJaA9DCI1iuaXVeVpAlIaUUpRoFU3oA2gWR0C4TyKgyuZDdX2UKGgGaAloD0MItyizQSYNWUCUhpRSlGgVTegDaBZHQLhV+dbgTAZ1fZQoaAZoCWgPQwhoP1JEBuphQJSGlFKUaBVN6ANoFkdAuFe4cDKYA3V9lChoBmgJaA9DCEWhZd0/N15AlIaUUpRoFU3oA2gWR0C4WDGnGbTddX2UKGgGaAloD0MIw35PrFMrX0CUhpRSlGgVTegDaBZHQLhYPxDst051fZQoaAZoCWgPQwjb/SrAd5JfQJSGlFKUaBVN6ANoFkdAuFo4rPMSsnV9lChoBmgJaA9DCEURUrezs11AlIaUUpRoFU3oA2gWR0C4XIFCw8nvdX2UKGgGaAloD0MIVDcXf9tbYUCUhpRSlGgVTegDaBZHQLhdoPbfxc51fZQoaAZoCWgPQwgCvAUSFP9bQJSGlFKUaBVN6ANoFkdAuF2xeTmnwXV9lChoBmgJaA9DCBoZ5C5CIGBAlIaUUpRoFU3oA2gWR0C4XcEbkwN9dX2UKGgGaAloD0MIaXOc24RjJUCUhpRSlGgVTRMBaBZHQLhdyiUxEfF1fZQoaAZoCWgPQwhHPq946sNXQJSGlFKUaBVN6ANoFkdAuF5+CEpRXXVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 128,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb9f4a2fd22beb2d3c9b426c760865c0fc0f1b0acea0adb9046684be99e564e4
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff8ecf6d6a883d01089fdc3ab9b0624704b636a8614f8923e47596c7bc1230d4
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4788aceb974c3d72edaf82c7d4fc2d2714ac648c6fc934c17008f01814318831
|
3 |
+
size 250652
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -3.670340040213341, "std_reward": 28.184814427181102, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-11T01:49:28.789224"}
|