ppo-LunarLander-v2 / config.json
nachoglezmur's picture
Upload PPO LunarLander-v2 trained agent
ad44ccc verified
raw
history blame contribute delete
No virus
13.8 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c59f5ed03a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c59f5ed0430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c59f5ed04c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c59f5ed0550>", "_build": "<function ActorCriticPolicy._build at 0x7c59f5ed05e0>", "forward": "<function ActorCriticPolicy.forward at 0x7c59f5ed0670>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c59f5ed0700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c59f5ed0790>", "_predict": "<function ActorCriticPolicy._predict at 0x7c59f5ed0820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c59f5ed08b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c59f5ed0940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c59f5ed09d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c59f606a280>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1711661514274517992, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEYtFL5ocmU/x/5GPlX+fr5RsGA8te5mvQAAAAAAAAAA4g+TvhH7nz8on3Q9pY1xvuPfRr7ib7c9AAAAAAAAAABmIro9ZC1lPrjNP77UsTK+zudKvZTmhLwAAAAAAAAAAJpBf7zsSYi525pmOKK1C7N/K8u7KaSItwAAgD8AAIA/DYjHPcOJKrqcyJK7npdVOF0xgTqy80g4AAAAAAAAgD+zlyC9CYWsPj7n/j2dJWC+tDblPBH6qz0AAAAAAAAAAEAv5r2uY5K6Sa6WOo2X27W/mwu7k462uQAAgD8AAIA/gDd9PfmRoz+suT4+FzozvmBOPj1RyYW8AAAAAAAAAADNiDa9e4yDusbOpbsCxTk23np2u3SDpbUAAIA/AACAP5oLCrx7/oc/vhgOPrdpSb4rzuG8u5pqPQAAAAAAAAAAAEPGPVxzEbo0yzi8mYzWtv47S7pCwUU2AACAPwAAgD9m5tQ89rw9utTaQrxZrbq2QoZbujuwLTYAAIA/AAAAAJoT571cL2S6vqHnNPrjRrL0uIQ7vjkktAAAgD8AAIA/ANU6PY9yH7qSr8i6FbB2tYgAEruOeuU5AACAPwAAgD/aSbo9FIyNulFiEbz1vmY2BK6yuusPzbUAAIA/AACAP1WR/b5/iG8/zVW4vvdNK75ddgW/iPn0vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGSVNZ/0/W2MAWyUTegDjAF0lEdAmKhtXYDkl3V9lChoBkdAZTGjM3ZPEmgHTegDaAhHQJirYEQoTf11fZQoaAZHQGaSImw7kn1oB03oA2gIR0CYtVtWMju8dX2UKGgGR0BhHVDfFaStaAdN6ANoCEdAmL7Iku6ErXV9lChoBkdAZtpHAAQxvmgHTegDaAhHQJjDnW+XZ5B1fZQoaAZHQGMhDwQUYbdoB03oA2gIR0CYyRuscQyzdX2UKGgGR0Bj5/8jzI3jaAdN6ANoCEdAmMpTDTBqK3V9lChoBkdAYY0lzltCRmgHTegDaAhHQJjLci9qUNd1fZQoaAZHQFml+2mYSg5oB03oA2gIR0CYzrL2HtWudX2UKGgGR0BcKzfzjFQ3aAdN6ANoCEdAmNJaCL/CInV9lChoBkdAXGJmVZ9uxmgHTegDaAhHQJjc5U4rBj51fZQoaAZHQGWUigsbvPVoB03oA2gIR0CY3vrMkhRqdX2UKGgGR0BiDoiTt9hJaAdN6ANoCEdAmN9PitJWenV9lChoBkdAYgM+cpb2UWgHTegDaAhHQJjkmJCSidt1fZQoaAZHQF+Y63AmAsloB03oA2gIR0CY/QG7BfrsdX2UKGgGR0BlFqKpDNQkaAdN6ANoCEdAmP/150KZ2XV9lChoBkdAY61solUp/mgHTegDaAhHQJkACOtGNJh1fZQoaAZHQFu/mUGFBY5oB03oA2gIR0CZAq8SPEKmdX2UKGgGR0BnzIDeTFERaAdN6ANoCEdAmQqDpxFRYXV9lChoBkdAYS56By0a62gHTegDaAhHQJkXQBLf1pV1fZQoaAZHQGYODm8ujAVoB03oA2gIR0CZHHjAzpHJdX2UKGgGR0Bggr4WUKRdaAdN6ANoCEdAmSJGC/XXiHV9lChoBkdAY9dhQ3xWk2gHTegDaAhHQJkjk4Pwuul1fZQoaAZHQGHAvUaya/hoB03oA2gIR0CZJLUb1h9cdX2UKGgGR0BiElY+0PYnaAdN6ANoCEdAmSfltwaR6nV9lChoBkdAZuBtALRa5mgHTegDaAhHQJkrb1Gsmv51fZQoaAZHQF6jhmoR7JJoB03oA2gIR0CZNcM5fdAPdX2UKGgGR0BdSqji4rjHaAdN6ANoCEdAmTdOb3Gn43V9lChoBkdAZbhuEVWS2mgHTegDaAhHQJk3kofCAMF1fZQoaAZHQFxsJkoWpIdoB03oA2gIR0CZO49XtBv8dX2UKGgGR0BkzW+qR2bHaAdN6ANoCEdAmURWSMcZL3V9lChoBkdAXRVWuHN5dGgHTegDaAhHQJlY8A3kxRF1fZQoaAZHQGJjW/JvHcVoB03oA2gIR0CZWQIk7fYSdX2UKGgGR0BhWc8kleF+aAdN6ANoCEdAmVuPeHi3onV9lChoBkdAQWyKvV3EAGgHTU8BaAhHQJlgCxY7q6h1fZQoaAZHQGH61c2R7qpoB03oA2gIR0CZYqDUExIrdX2UKGgGR0BcrHMINVinaAdN6ANoCEdAmWuk7jkuH3V9lChoBkdAY/IVlf7aZmgHTegDaAhHQJlxhGDtgKF1fZQoaAZHQGCXi5Etuk1oB03oA2gIR0CZd3m2sq8UdX2UKGgGR0Bc34ao/A0saAdN6ANoCEdAmXihUFSsKnV9lChoBkdAYlD1KXfIjmgHTegDaAhHQJl5qp5u63B1fZQoaAZHQGDdW8Zk079oB03oA2gIR0CZfMMcZLqVdX2UKGgGR0BmmWcJ+lTFaAdN6ANoCEdAmYA3BciW3XV9lChoBkdAYr6CFK02L2gHTegDaAhHQJmJ8vYe1a51fZQoaAZHQGLvzl90A95oB03oA2gIR0CZi8azu4PPdX2UKGgGR0BbuSILw4KhaAdN6ANoCEdAmY/LaufVZ3V9lChoBkdAYiLyUcGTtGgHTegDaAhHQJmWNQMx46h1fZQoaAZHQGTu5L7GecxoB03oA2gIR0CZmVJul41QdX2UKGgGR0BfxFHBk7OnaAdN6ANoCEdAmZlkEC/47HV9lChoBkdAYlaZDRc/uGgHTegDaAhHQJmv+c+aBqd1fZQoaAZHQGB5Za/yoXNoB03oA2gIR0CZtK3Td+G5dX2UKGgGR0BlPW3UhFEzaAdN6ANoCEdAmbc2WD6Fd3V9lChoBkdAbL5Eb5uZTmgHTaEBaAhHQJm4K7Wd3B51fZQoaAZHQGDC/OlfqotoB03oA2gIR0CZv/stCiRGdX2UKGgGR0BnijRjSXt0aAdN6ANoCEdAmcSCtihFmXV9lChoBkdAYyOdYGMXJ2gHTegDaAhHQJnJt4X40uV1fZQoaAZHQGKi2CuloDhoB03oA2gIR0CZyuvStvGZdX2UKGgGR0BgIepsGgSOaAdN6ANoCEdAmcv0DZDiO3V9lChoBkdAXpw7Qswta2gHTegDaAhHQJnQLiqABkt1fZQoaAZHQF9uuaWom5VoB03oA2gIR0CZ1g38GcFydX2UKGgGR0BgnxoVVPvbaAdN6ANoCEdAmeNdK/VRUHV9lChoBkdAXzQ9B8hLXmgHTegDaAhHQJnnjzxwyZd1fZQoaAZHQGAnKqGUOd5oB03oA2gIR0CZ7jPsiSq3dX2UKGgGR0BhphmyxA0LaAdN6ANoCEdAmfFFWKdhAnV9lChoBkdAY2RUipvP1WgHTegDaAhHQJnxWOOsDGN1fZQoaAZHQGQfl6Rhc7hoB03oA2gIR0CaBvUILPUsdX2UKGgGR0BwAuf7JnxsaAdNgANoCEdAmgmtbHIZInV9lChoBkdAYmOo86mwaGgHTegDaAhHQJoMQFfReC11fZQoaAZHQGCC+nqFAVxoB03oA2gIR0CaDpwA2hqTdX2UKGgGR0BmAxCQcPvsaAdN6ANoCEdAmhbGB8QZoHV9lChoBkdAZS410knkUGgHTegDaAhHQJobg/wAlv91fZQoaAZHQGbiHTI/7i1oB03oA2gIR0CaITVp9JBgdX2UKGgGR0BaRzBdld1MaAdN6ANoCEdAmiKIOhCdBnV9lChoBkdAYKMOWjXWfGgHTegDaAhHQJojx6gM+eR1fZQoaAZHQF3r/d69kBloB03oA2gIR0CaJw2xptaZdX2UKGgGR0BwU0CmuTzNaAdNmwFoCEdAmikniBGx2XV9lChoBkdAYeDpQk5ZKWgHTegDaAhHQJoq17u2JBR1fZQoaAZHQGRvN6w+t8xoB03oA2gIR0CaOQXxOLzgdX2UKGgGR0BhTW67NB4VaAdN6ANoCEdAmj2WphnanXV9lChoBkdAXxP51vES/WgHTegDaAhHQJpEiVVxS511fZQoaAZHQGSzALRa5gBoB03oA2gIR0CaR5dSl3yJdX2UKGgGR0BjLn3lCCz1aAdN6ANoCEdAmkeqgIyCWnV9lChoBkdAXOSqvNeMQ2gHTegDaAhHQJpKgQI2OyV1fZQoaAZHQGEdyDZlFttoB03oA2gIR0CaXsnoxHoYdX2UKGgGR0Bi1VW6shgWaAdN6ANoCEdAmmGmBz3h43V9lChoBkdAX3myKNyYHGgHTegDaAhHQJpvzVWjoIR1fZQoaAZHQF5xyxzJZGNoB03oA2gIR0CadMa7EpAldX2UKGgGR0Bj22IZZSvUaAdN6ANoCEdAmnorRnezlnV9lChoBkdAZaehew9q12gHTegDaAhHQJp7RxCIDYB1fZQoaAZHQF/jUKRdQfpoB03oA2gIR0CafEuDzyz5dX2UKGgGR0BmgMOby6MBaAdN6ANoCEdAmn8B3NcGDHV9lChoBkdAZh4khzNliGgHTegDaAhHQJqAx6dDpkh1fZQoaAZHQGUUYCIUJv5oB03oA2gIR0CagjuvUz9CdX2UKGgGR0Bj+zA+IMz/aAdN6ANoCEdAmozYybhFVnV9lChoBkdAaCs9KVY6n2gHTegDaAhHQJqQ3ObAk9l1fZQoaAZHQF3yXvH93r5oB03oA2gIR0CamYJTl1bJdX2UKGgGR0BscH+l0o0AaAdN6gFoCEdAmpwOeSSvDHV9lChoBkdAYLM/LTx5LWgHTegDaAhHQJqc874i5d51fZQoaAZHQGSk3Onl4khoB03oA2gIR0CanQWdmQKbdX2UKGgGR0Bi/3F98Z1naAdN6ANoCEdAmp+fGuLaVXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}