ppo-LunarLander-v2 / config.json
nabeelraza's picture
Initial Commit
ecb2c7e
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7e14ee4700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7e14ee4790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7e14ee4820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7e14ee48b0>", "_build": "<function ActorCriticPolicy._build at 0x7f7e14ee4940>", "forward": "<function ActorCriticPolicy.forward at 0x7f7e14ee49d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7e14ee4a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7e14ee4af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7e14ee4b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7e14ee4c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7e14ee4ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7e14ee4d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7e14ede100>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683716239720534650, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqeij1FU+0+0OT7O4BRpr4jBTY8AjgqvAAAAAAAAAAAGllKPoyCVD7Vr9K9F1OBvluACD2qg2S9AAAAAAAAAAAtVi4+yO+kvNvKADzmGKG69doSvntYf7sAAIA/AACAPyY0I74hvIi8Dmcgva5Ry7sMluw9kg6jPAAAgD8AAIA/AHLdPD3bLbvM7YS9MvzCPLTohDz6oKW9AACAPwAAgD8A3O68rl2zunV+h7W0e6awOIS/OUCHtDQAAIA/AACAP3Pcrr0psAM/M6ZcPU3V1L4At+u8BrKhvAAAAAAAAAAAGiIpPZqshz8LwSg+ClAVv9nTtjyAw1K8AAAAAAAAAAAaAgC+3GBhvAP/VD4GLo+8fI3xvMzjSL4AAIA/AACAP5oB6juWXrM/qCo5P0tf2r7Gdge8m8UnvgAAAAAAAAAAzUhUPMTTxj2214a97pOIvhr0N7wuipy8AAAAAAAAAADNpk8+rNiDPk1dtbwl80y+i6fFPQaenb0AAAAAAAAAAADEbT1cRxC6UVECOBf/mTIM1BC7ftwatwAAgD8AAIA/+o0xvjelLT4bdmI+DEJivlcCD7zl14w9AAAAAAAAAAADsYW+o8B+Pw6Qn75plSm/+KXfvuYbnL0AAAAAAAAAAK1qKj6b7JC8lbf4ulKBTTm4Pv29FVsrOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAEAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVAAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCIwhnrY5GMAWyUS+qMAXSUR0Cb12MSK3uvdX2UKGgGR0BxPL557gKnaAdL52gIR0Cb17vZRKpUdX2UKGgGR0Bwe6Y9gWrPaAdNAAFoCEdAm9f9b5dnkHV9lChoBkdAcA4DZDiOvWgHS+RoCEdAm9iqDGtITXV9lChoBkdAcFO7BwdbPmgHS/FoCEdAm9nzSgGr0nV9lChoBkdAcpWA80UGmmgHS/ZoCEdAm9otw3o9tHV9lChoBkdAcZ096Tnq3WgHS/5oCEdAm9pZKvmoznV9lChoBkdAc2dDa4+bE2gHS+hoCEdAm9qHkYGdJHV9lChoBkdAc5MBzV+ZxGgHS+BoCEdAm9s2tp22X3V9lChoBkdAcDOuSwGGEmgHS95oCEdAm9x0ipvP1XV9lChoBkdAboDyGzru6WgHS+doCEdAm9yhTn7pFHV9lChoBkdAbV1afzz3AWgHTdcBaAhHQJvd/5pJwsJ1fZQoaAZHQHF3ITTOPeZoB00HAWgIR0Cb3gYqXnhbdX2UKGgGR0Bv9g2MsH0LaAdL+GgIR0Cb3kkBjnV5dX2UKGgGR0Bxbx6Ww/xEaAdNBQFoCEdAm97Ja3ZwoHV9lChoBkdAcDTS4OMER2gHS/RoCEdAm98OB19v0nV9lChoBkdAbzcxs2vSt2gHTUMBaAhHQJvgbjyWiUR1fZQoaAZHQG7sVpj+aSdoB00kAWgIR0Cb4J2qT8pDdX2UKGgGR0ByZ7nSv1UVaAdLz2gIR0Cb4Jm+CbtrdX2UKGgGR0BwqAEFGG21aAdL2WgIR0Cb4Xguyu6mdX2UKGgGR0ByeTTEzfrKaAdL6WgIR0Cb4eGhmGucdX2UKGgGR0Bwu4SHuZ1FaAdL/GgIR0Cb4xBeXzDodX2UKGgGR0BxAEaJhvzfaAdL8GgIR0Cb45jx0+1SdX2UKGgGR0Bxdu0pmVZ+aAdNiQFoCEdAm+ZNwrDqGHV9lChoBkdAcsV0qYqoZWgHS/xoCEdAm+ZXI+4b0nV9lChoBkdAbwyKfFrEcmgHS/BoCEdAm+fj94u9OHV9lChoBkdAbeNZ8rqdH2gHS+hoCEdAm+fycslLOHV9lChoBkdAb+fmQKa5PWgHS+VoCEdAm+iRQFcIJXV9lChoBkdAcuwfdyksSWgHTRIBaAhHQJvpjm9xp+N1fZQoaAZHQHA/R5s0pExoB0v1aAhHQJvpqI1tO211fZQoaAZHQHEXJKJ2t+1oB0vWaAhHQJvpxhiLEUF1fZQoaAZHQG1TYJu2qkxoB0vVaAhHQJvp6VUuL751fZQoaAZHQHGxqptJnQJoB01fAWgIR0Cb6rAckt2+dX2UKGgGR0Bx5C0gKWszaAdNAQFoCEdAm+utsN2C/XV9lChoBkdAcuawZOzpo2gHTQsBaAhHQJvtT0J4SpR1fZQoaAZHQHIUdiH6/ItoB00EAWgIR0Cb7WwWFev7dX2UKGgGR0Bww5OM2m52aAdL3mgIR0Cb7b3pwCKadX2UKGgGR0Bujhbpu/DcaAdL92gIR0Cb7jDye7L/dX2UKGgGR0By5rO6d1+zaAdL2mgIR0Cb7+00m+j/dX2UKGgGR0By+tGYrrgPaAdL7WgIR0Cb8P8n/kvLdX2UKGgGR0BwABxgiNbUaAdL22gIR0Cb8jg3tKI0dX2UKGgGR0Bw3330wrUcaAdL7GgIR0Cb8lxJ/XoUdX2UKGgGR0BxJ09JSR8uaAdL2WgIR0Cb8uTZQHiWdX2UKGgGR0ByEnUI9kjHaAdNCQFoCEdAm/M/NZ/0/XV9lChoBkdAYozLaEi+tmgHTegDaAhHQJvzY+bExZd1fZQoaAZHQHJ7GVu76HloB0v0aAhHQJvzwU7CBPN1fZQoaAZHQHMeJ1A7gbZoB0vtaAhHQJv0FTqB3A51fZQoaAZHQHM6+CsfaHtoB00kAWgIR0Cb9NSv1UVBdX2UKGgGR0Bw3lclgMMJaAdNJQFoCEdAm/To7aIvanV9lChoBkdAcsQI3zcynGgHS/loCEdAm/UCeNDMNnV9lChoBkdAdAbhFEy+H2gHS9doCEdAm/UW1D0Dl3V9lChoBkdAbqT3+uNgjWgHS+toCEdAm/WxmbsniXV9lChoBkdAcJg4VymygWgHS+NoCEdAm/XJMYdhiXV9lChoBkdAcYcH93r2QGgHS/loCEdAm/XKpkwvg3V9lChoBkdAcufqKP4mC2gHS/5oCEdAm/d7qD9OynV9lChoBkdAcQrzposZpGgHS9BoCEdAm/eA2VE/jnV9lChoBkdAcVBTnq3VkWgHTQEBaAhHQJv4DgZTAFh1fZQoaAZHQG4VwfhddE9oB0vWaAhHQJv4lMK1G9Z1fZQoaAZHQHBOX/95yENoB0vVaAhHQJv5GH2ys0Z1fZQoaAZHQHKymtdRiw1oB00NAWgIR0Cb+UzV+Zw5dX2UKGgGR0BxDrkT6BRRaAdL1WgIR0Cb+WyVfNRndX2UKGgGR0Bz4GaMJhOQaAdNAwFoCEdAm/mIpUgjhXV9lChoBkdAbuEdRzijtWgHS+poCEdAm/rPszEaVHV9lChoBkdAcn3dAPd2xWgHTSEBaAhHQJv61RGc4HZ1fZQoaAZHQHHaiHVPN3ZoB0vYaAhHQJv7VeLNwBJ1fZQoaAZHQHBaN/WlMytoB0vXaAhHQJv7axGDtgN1fZQoaAZHQHKgH7P6bfBoB00OAWgIR0Cb++sRxtHhdX2UKGgGR0BwNjyz5XU6aAdNFwFoCEdAm/wIXsPatnV9lChoBkdAcuHiXpnpS2gHTREBaAhHQJv8FCiRGMJ1fZQoaAZHQHCyjL8rI5poB00kAWgIR0Cb/VV58jRldX2UKGgGR0BuzuRigCfZaAdL52gIR0Cb/jg5zYEodX2UKGgGR0BvVcXJo0yhaAdL22gIR0Cb/mz4k/r0dX2UKGgGR0ByoaOfdyksaAdNEAFoCEdAm/61W8yvcXV9lChoBkdAc7CJVbRne2gHS99oCEdAm/7433pOe3V9lChoBkdAcj9VlwtJ4GgHS+FoCEdAm/9gIIF/x3V9lChoBkdAcZObqyGBWmgHTTcBaAhHQJv/qVC5Vfh1fZQoaAZHQHJqNsJpnHxoB0vyaAhHQJv/sfNiYsx1fZQoaAZHQG4Yg8SwnploB0vfaAhHQJwAcKIBRyh1fZQoaAZHQHGIJQLux8loB00bAWgIR0CcAJH80k4WdX2UKGgGR0ByGSnuRcNZaAdL0GgIR0CcAKMz/IbPdX2UKGgGR0BwHAEs8PnTaAdL7GgIR0CcATliSaE0dX2UKGgGR0ByD+tCAtnPaAdL52gIR0CcAdS2H+IedX2UKGgGR0BwmoQnQY1paAdNJQFoCEdAnAIpXlr/KnV9lChoBkdAcqoZ3s5XEWgHS8NoCEdAnAIwiNbTt3V9lChoBkdAcFmcaOxSpGgHS/toCEdAnAJSjUNKAnV9lChoBkdAcFbsz2vjfmgHS/9oCEdAnAJPdRBNVXV9lChoBkdActAb9ZRsM2gHS9xoCEdAnAOPDUExI3V9lChoBkdAcSNufVZs9GgHS89oCEdAnAR7K/20zHV9lChoBkdAcfcHGjsUqWgHTQQBaAhHQJwE4iliz9l1fZQoaAZHQHOb4sZpBX1oB0vxaAhHQJwE9zIV/MJ1fZQoaAZHQHKQQ+pwS8JoB0vRaAhHQJwF6YnfEXN1fZQoaAZHQHO3MDfWMCNoB0vtaAhHQJwGhq7Ackt1fZQoaAZHQG+UkIw/PgNoB0vmaAhHQJwGjWpZOi51fZQoaAZHQHOtgf+0gKZoB00lAWgIR0CcBzl05lvqdX2UKGgGR0Bsn6TSsr/baAdL6WgIR0CcB1Y1He7+dX2UKGgGR0Bsc3BHkLhKaAdL6GgIR0CcCKHIp6QedX2UKGgGR0ByHOF7D2rXaAdL+WgIR0CcCQyEtdzGdX2UKGgGR0BxlF9lVcUuaAdNBgFoCEdAnAmxW5painV9lChoBkdAcljtGus90WgHTSYBaAhHQJwKiNVBD5V1fZQoaAZHQHKKpKe05U9oB0vjaAhHQJwLSTyJ9Ap1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}