mzbac commited on
Commit
316a5ca
1 Parent(s): 725b7ae

Upload 4 files

Browse files
config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "vocab_size": 81920,
3
+ "max_position_embeddings": 4096,
4
+ "hidden_size": 7168,
5
+ "intermediate_size": 16384,
6
+ "num_hidden_layers": 64,
7
+ "num_attention_heads": 64,
8
+ "rms_norm_eps": 1e-06,
9
+ "rope_theta": 10000,
10
+ "quantization": {
11
+ "group_size": 64,
12
+ "bits": 4
13
+ },
14
+ "model_type": "yayi"
15
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<pad>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": true
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenization_yayi.py ADDED
@@ -0,0 +1,254 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+
21
+ import os
22
+ from shutil import copyfile
23
+ from typing import Any, Dict, List, Optional, Tuple
24
+
25
+ import sentencepiece as spm
26
+
27
+ from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
28
+ from transformers.utils import logging
29
+
30
+
31
+ logger = logging.get_logger(__name__)
32
+
33
+ VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
34
+
35
+ PRETRAINED_VOCAB_FILES_MAP = {
36
+ "vocab_file": {},
37
+ "tokenizer_file": {},
38
+ }
39
+ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
40
+
41
+
42
+ class YayiTokenizer(PreTrainedTokenizer):
43
+ """
44
+ Construct a Yayi tokenizer. Based on byte-level Byte-Pair-Encoding.
45
+
46
+ Args:
47
+ vocab_file (`str`):
48
+ Path to the vocabulary file.
49
+ """
50
+
51
+ vocab_files_names = VOCAB_FILES_NAMES
52
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
53
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
54
+ model_input_names = ["input_ids", "attention_mask"]
55
+
56
+ def __init__(
57
+ self,
58
+ vocab_file,
59
+ unk_token="<unk>",
60
+ bos_token="<s>",
61
+ eos_token="</s>",
62
+ pad_token="<pad>",
63
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
64
+ add_bos_token=True,
65
+ add_eos_token=False,
66
+ clean_up_tokenization_spaces=False,
67
+ **kwargs,
68
+ ):
69
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
70
+ bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
71
+ eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
72
+ unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
73
+ pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
74
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
75
+ self.sp_model.Load(vocab_file)
76
+ super().__init__(
77
+ bos_token=bos_token,
78
+ eos_token=eos_token,
79
+ unk_token=unk_token,
80
+ pad_token=pad_token,
81
+ add_bos_token=add_bos_token,
82
+ add_eos_token=add_eos_token,
83
+ sp_model_kwargs=self.sp_model_kwargs,
84
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
85
+ **kwargs,
86
+ )
87
+ self.vocab_file = vocab_file
88
+ self.add_bos_token = add_bos_token
89
+ self.add_eos_token = add_eos_token
90
+
91
+
92
+ def __getstate__(self):
93
+ state = self.__dict__.copy()
94
+ state["sp_model"] = None
95
+ state["sp_model_proto"] = self.sp_model.serialized_model_proto()
96
+ return state
97
+
98
+ def __setstate__(self, d):
99
+ self.__dict__ = d
100
+ # self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
101
+ # self.sp_model.Load(self.vocab_file)
102
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
103
+ self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
104
+
105
+ @property
106
+ def vocab_size(self):
107
+ """Returns vocab size"""
108
+ return self.sp_model.get_piece_size()
109
+
110
+ def get_vocab(self):
111
+ """Returns vocab as a dict"""
112
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
113
+ vocab.update(self.added_tokens_encoder)
114
+ return vocab
115
+
116
+ def _tokenize(self, text):
117
+ """Returns a tokenized string."""
118
+ return self.sp_model.encode(text, out_type=str)
119
+
120
+ def _convert_token_to_id(self, token):
121
+ """Converts a token (str) in an id using the vocab."""
122
+ return self.sp_model.piece_to_id(token)
123
+
124
+ def _convert_id_to_token(self, index):
125
+ """Converts an index (integer) in a token (str) using the vocab."""
126
+ token = self.sp_model.IdToPiece(index)
127
+ return token
128
+
129
+ def convert_tokens_to_string(self, tokens):
130
+ """Converts a sequence of tokens (string) in a single string."""
131
+ current_sub_tokens = []
132
+ out_string = ""
133
+ prev_is_special = False
134
+ for i, token in enumerate(tokens):
135
+ # make sure that special tokens are not decoded using sentencepiece model
136
+ if token in self.all_special_tokens:
137
+ if not prev_is_special and i != 0:
138
+ out_string += " "
139
+ out_string += self.sp_model.decode(current_sub_tokens) + token
140
+ prev_is_special = True
141
+ current_sub_tokens = []
142
+ else:
143
+ current_sub_tokens.append(token)
144
+ prev_is_special = False
145
+ out_string += self.sp_model.decode(current_sub_tokens)
146
+ return out_string
147
+
148
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
149
+ """
150
+ Save the vocabulary and special tokens file to a directory.
151
+
152
+ Args:
153
+ save_directory (`str`):
154
+ The directory in which to save the vocabulary.
155
+
156
+ Returns:
157
+ `Tuple(str)`: Paths to the files saved.
158
+ """
159
+ if not os.path.isdir(save_directory):
160
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
161
+ return
162
+ out_vocab_file = os.path.join(
163
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
164
+ )
165
+
166
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
167
+ copyfile(self.vocab_file, out_vocab_file)
168
+ elif not os.path.isfile(self.vocab_file):
169
+ with open(out_vocab_file, "wb") as fi:
170
+ content_spiece_model = self.sp_model.serialized_model_proto()
171
+ fi.write(content_spiece_model)
172
+
173
+ return (out_vocab_file,)
174
+
175
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
176
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
177
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
178
+
179
+ output = bos_token_id + token_ids_0 + eos_token_id
180
+
181
+ if token_ids_1 is not None:
182
+ output = output + bos_token_id + token_ids_1 + eos_token_id
183
+
184
+ return output
185
+
186
+ def get_special_tokens_mask(
187
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
188
+ ) -> List[int]:
189
+ """
190
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
191
+ special tokens using the tokenizer `prepare_for_model` method.
192
+
193
+ Args:
194
+ token_ids_0 (`List[int]`):
195
+ List of IDs.
196
+ token_ids_1 (`List[int]`, *optional*):
197
+ Optional second list of IDs for sequence pairs.
198
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
199
+ Whether or not the token list is already formatted with special tokens for the model.
200
+
201
+ Returns:
202
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
203
+ """
204
+ if already_has_special_tokens:
205
+ return super().get_special_tokens_mask(
206
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
207
+ )
208
+
209
+ bos_token_id = [1] if self.add_bos_token else []
210
+ eos_token_id = [1] if self.add_eos_token else []
211
+
212
+ if token_ids_1 is None:
213
+ return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
214
+ return (
215
+ bos_token_id
216
+ + ([0] * len(token_ids_0))
217
+ + eos_token_id
218
+ + bos_token_id
219
+ + ([0] * len(token_ids_1))
220
+ + eos_token_id
221
+ )
222
+
223
+ def create_token_type_ids_from_sequences(
224
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
225
+ ) -> List[int]:
226
+ """
227
+ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
228
+ sequence pair mask has the following format:
229
+
230
+ ```
231
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
232
+ | first sequence | second sequence |
233
+ ```
234
+
235
+ if token_ids_1 is None, only returns the first portion of the mask (0s).
236
+
237
+ Args:
238
+ token_ids_0 (`List[int]`):
239
+ List of ids.
240
+ token_ids_1 (`List[int]`, *optional*):
241
+ Optional second list of IDs for sequence pairs.
242
+
243
+ Returns:
244
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
245
+ """
246
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
247
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
248
+
249
+ output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
250
+
251
+ if token_ids_1 is not None:
252
+ output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
253
+
254
+ return output
tokenizer_config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": true,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": true,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "3": {
30
+ "content": "<pad>",
31
+ "lstrip": false,
32
+ "normalized": true,
33
+ "rstrip": false,
34
+ "single_word": true,
35
+ "special": true
36
+ }
37
+ },
38
+ "additional_special_tokens": [],
39
+ "auto_map": {
40
+ "AutoTokenizer": [
41
+ "tokenization_yayi.YayiTokenizer",
42
+ null
43
+ ]
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": false,
47
+ "eos_token": "</s>",
48
+ "model_max_length": 1000000000000000019884624838656,
49
+ "pad_token": "<pad>",
50
+ "sp_model_kwargs": {},
51
+ "tokenizer_class": "YayiTokenizer",
52
+ "unk_token": "<unk>"
53
+ }