Justin Dulay
commited on
Commit
•
8b26614
1
Parent(s):
39bb242
update for batches
Browse files- .gitignore +1 -0
- handler.py +661 -15
- local_test.py +61 -0
- output_image_0.png +0 -0
- output_image_1.png +0 -0
- output_image_2.png +0 -0
- output_image_3.png +0 -0
- output_image_4.png +0 -0
- output_image_5.png +0 -0
- output_image_6.png +0 -0
- output_image_7.png +0 -0
- output_image_8.png +0 -0
- output_image_9.png +0 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
env/
|
handler.py
CHANGED
@@ -10,10 +10,632 @@ import torch
|
|
10 |
from torch import nn
|
11 |
|
12 |
|
13 |
-
import subprocess
|
14 |
-
result = subprocess.run(["pip", "install", "git+https://github.com/sberbank-ai/Real-ESRGAN.git"], check=True)
|
15 |
-
print(f"git+https://github.com/sberbank-ai/Real-ESRGAN.git = {result}")
|
16 |
-
from RealESRGAN import RealESRGAN
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
|
19 |
class EndpointHandler():
|
@@ -32,18 +654,42 @@ class EndpointHandler():
|
|
32 |
A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82}
|
33 |
"""
|
34 |
inputs = data.pop("inputs", data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
|
38 |
|
39 |
-
|
40 |
-
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
|
48 |
-
|
49 |
-
|
|
|
10 |
from torch import nn
|
11 |
|
12 |
|
13 |
+
# import subprocess
|
14 |
+
# result = subprocess.run(["pip", "install", "git+https://github.com/sberbank-ai/Real-ESRGAN.git"], check=True)
|
15 |
+
# print(f"git+https://github.com/sberbank-ai/Real-ESRGAN.git = {result}")
|
16 |
+
# from RealESRGAN import RealESRGAN
|
17 |
+
|
18 |
+
# no need to install, just take in all of the necessary files from the notebook
|
19 |
+
import math
|
20 |
+
import torch
|
21 |
+
from torch import nn as nn
|
22 |
+
from torch.nn import functional as F
|
23 |
+
from torch.nn import init as init
|
24 |
+
from torch.nn.modules.batchnorm import _BatchNorm
|
25 |
+
|
26 |
+
@torch.no_grad()
|
27 |
+
def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs):
|
28 |
+
"""Initialize network weights.
|
29 |
+
|
30 |
+
Args:
|
31 |
+
module_list (list[nn.Module] | nn.Module): Modules to be initialized.
|
32 |
+
scale (float): Scale initialized weights, especially for residual
|
33 |
+
blocks. Default: 1.
|
34 |
+
bias_fill (float): The value to fill bias. Default: 0
|
35 |
+
kwargs (dict): Other arguments for initialization function.
|
36 |
+
"""
|
37 |
+
if not isinstance(module_list, list):
|
38 |
+
module_list = [module_list]
|
39 |
+
for module in module_list:
|
40 |
+
for m in module.modules():
|
41 |
+
if isinstance(m, nn.Conv2d):
|
42 |
+
init.kaiming_normal_(m.weight, **kwargs)
|
43 |
+
m.weight.data *= scale
|
44 |
+
if m.bias is not None:
|
45 |
+
m.bias.data.fill_(bias_fill)
|
46 |
+
elif isinstance(m, nn.Linear):
|
47 |
+
init.kaiming_normal_(m.weight, **kwargs)
|
48 |
+
m.weight.data *= scale
|
49 |
+
if m.bias is not None:
|
50 |
+
m.bias.data.fill_(bias_fill)
|
51 |
+
elif isinstance(m, _BatchNorm):
|
52 |
+
init.constant_(m.weight, 1)
|
53 |
+
if m.bias is not None:
|
54 |
+
m.bias.data.fill_(bias_fill)
|
55 |
+
|
56 |
+
|
57 |
+
def make_layer(basic_block, num_basic_block, **kwarg):
|
58 |
+
"""Make layers by stacking the same blocks.
|
59 |
+
|
60 |
+
Args:
|
61 |
+
basic_block (nn.module): nn.module class for basic block.
|
62 |
+
num_basic_block (int): number of blocks.
|
63 |
+
|
64 |
+
Returns:
|
65 |
+
nn.Sequential: Stacked blocks in nn.Sequential.
|
66 |
+
"""
|
67 |
+
layers = []
|
68 |
+
for _ in range(num_basic_block):
|
69 |
+
layers.append(basic_block(**kwarg))
|
70 |
+
return nn.Sequential(*layers)
|
71 |
+
|
72 |
+
|
73 |
+
class ResidualBlockNoBN(nn.Module):
|
74 |
+
"""Residual block without BN.
|
75 |
+
|
76 |
+
It has a style of:
|
77 |
+
---Conv-ReLU-Conv-+-
|
78 |
+
|________________|
|
79 |
+
|
80 |
+
Args:
|
81 |
+
num_feat (int): Channel number of intermediate features.
|
82 |
+
Default: 64.
|
83 |
+
res_scale (float): Residual scale. Default: 1.
|
84 |
+
pytorch_init (bool): If set to True, use pytorch default init,
|
85 |
+
otherwise, use default_init_weights. Default: False.
|
86 |
+
"""
|
87 |
+
|
88 |
+
def __init__(self, num_feat=64, res_scale=1, pytorch_init=False):
|
89 |
+
super(ResidualBlockNoBN, self).__init__()
|
90 |
+
self.res_scale = res_scale
|
91 |
+
self.conv1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
|
92 |
+
self.conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
|
93 |
+
self.relu = nn.ReLU(inplace=True)
|
94 |
+
|
95 |
+
if not pytorch_init:
|
96 |
+
default_init_weights([self.conv1, self.conv2], 0.1)
|
97 |
+
|
98 |
+
def forward(self, x):
|
99 |
+
identity = x
|
100 |
+
out = self.conv2(self.relu(self.conv1(x)))
|
101 |
+
return identity + out * self.res_scale
|
102 |
+
|
103 |
+
|
104 |
+
class Upsample(nn.Sequential):
|
105 |
+
"""Upsample module.
|
106 |
+
|
107 |
+
Args:
|
108 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
109 |
+
num_feat (int): Channel number of intermediate features.
|
110 |
+
"""
|
111 |
+
|
112 |
+
def __init__(self, scale, num_feat):
|
113 |
+
m = []
|
114 |
+
if (scale & (scale - 1)) == 0: # scale = 2^n
|
115 |
+
for _ in range(int(math.log(scale, 2))):
|
116 |
+
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
117 |
+
m.append(nn.PixelShuffle(2))
|
118 |
+
elif scale == 3:
|
119 |
+
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
120 |
+
m.append(nn.PixelShuffle(3))
|
121 |
+
else:
|
122 |
+
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
|
123 |
+
super(Upsample, self).__init__(*m)
|
124 |
+
|
125 |
+
|
126 |
+
def flow_warp(x, flow, interp_mode='bilinear', padding_mode='zeros', align_corners=True):
|
127 |
+
"""Warp an image or feature map with optical flow.
|
128 |
+
|
129 |
+
Args:
|
130 |
+
x (Tensor): Tensor with size (n, c, h, w).
|
131 |
+
flow (Tensor): Tensor with size (n, h, w, 2), normal value.
|
132 |
+
interp_mode (str): 'nearest' or 'bilinear'. Default: 'bilinear'.
|
133 |
+
padding_mode (str): 'zeros' or 'border' or 'reflection'.
|
134 |
+
Default: 'zeros'.
|
135 |
+
align_corners (bool): Before pytorch 1.3, the default value is
|
136 |
+
align_corners=True. After pytorch 1.3, the default value is
|
137 |
+
align_corners=False. Here, we use the True as default.
|
138 |
+
|
139 |
+
Returns:
|
140 |
+
Tensor: Warped image or feature map.
|
141 |
+
"""
|
142 |
+
assert x.size()[-2:] == flow.size()[1:3]
|
143 |
+
_, _, h, w = x.size()
|
144 |
+
# create mesh grid
|
145 |
+
grid_y, grid_x = torch.meshgrid(torch.arange(0, h).type_as(x), torch.arange(0, w).type_as(x))
|
146 |
+
grid = torch.stack((grid_x, grid_y), 2).float() # W(x), H(y), 2
|
147 |
+
grid.requires_grad = False
|
148 |
+
|
149 |
+
vgrid = grid + flow
|
150 |
+
# scale grid to [-1,1]
|
151 |
+
vgrid_x = 2.0 * vgrid[:, :, :, 0] / max(w - 1, 1) - 1.0
|
152 |
+
vgrid_y = 2.0 * vgrid[:, :, :, 1] / max(h - 1, 1) - 1.0
|
153 |
+
vgrid_scaled = torch.stack((vgrid_x, vgrid_y), dim=3)
|
154 |
+
output = F.grid_sample(x, vgrid_scaled, mode=interp_mode, padding_mode=padding_mode, align_corners=align_corners)
|
155 |
+
|
156 |
+
# TODO, what if align_corners=False
|
157 |
+
return output
|
158 |
+
|
159 |
+
|
160 |
+
def resize_flow(flow, size_type, sizes, interp_mode='bilinear', align_corners=False):
|
161 |
+
"""Resize a flow according to ratio or shape.
|
162 |
+
|
163 |
+
Args:
|
164 |
+
flow (Tensor): Precomputed flow. shape [N, 2, H, W].
|
165 |
+
size_type (str): 'ratio' or 'shape'.
|
166 |
+
sizes (list[int | float]): the ratio for resizing or the final output
|
167 |
+
shape.
|
168 |
+
1) The order of ratio should be [ratio_h, ratio_w]. For
|
169 |
+
downsampling, the ratio should be smaller than 1.0 (i.e., ratio
|
170 |
+
< 1.0). For upsampling, the ratio should be larger than 1.0 (i.e.,
|
171 |
+
ratio > 1.0).
|
172 |
+
2) The order of output_size should be [out_h, out_w].
|
173 |
+
interp_mode (str): The mode of interpolation for resizing.
|
174 |
+
Default: 'bilinear'.
|
175 |
+
align_corners (bool): Whether align corners. Default: False.
|
176 |
+
|
177 |
+
Returns:
|
178 |
+
Tensor: Resized flow.
|
179 |
+
"""
|
180 |
+
_, _, flow_h, flow_w = flow.size()
|
181 |
+
if size_type == 'ratio':
|
182 |
+
output_h, output_w = int(flow_h * sizes[0]), int(flow_w * sizes[1])
|
183 |
+
elif size_type == 'shape':
|
184 |
+
output_h, output_w = sizes[0], sizes[1]
|
185 |
+
else:
|
186 |
+
raise ValueError(f'Size type should be ratio or shape, but got type {size_type}.')
|
187 |
+
|
188 |
+
input_flow = flow.clone()
|
189 |
+
ratio_h = output_h / flow_h
|
190 |
+
ratio_w = output_w / flow_w
|
191 |
+
input_flow[:, 0, :, :] *= ratio_w
|
192 |
+
input_flow[:, 1, :, :] *= ratio_h
|
193 |
+
resized_flow = F.interpolate(
|
194 |
+
input=input_flow, size=(output_h, output_w), mode=interp_mode, align_corners=align_corners)
|
195 |
+
return resized_flow
|
196 |
+
|
197 |
+
|
198 |
+
# TODO: may write a cpp file
|
199 |
+
def pixel_unshuffle(x, scale):
|
200 |
+
""" Pixel unshuffle.
|
201 |
+
|
202 |
+
Args:
|
203 |
+
x (Tensor): Input feature with shape (b, c, hh, hw).
|
204 |
+
scale (int): Downsample ratio.
|
205 |
+
|
206 |
+
Returns:
|
207 |
+
Tensor: the pixel unshuffled feature.
|
208 |
+
"""
|
209 |
+
print('PIXEL UNSHUFFLE X SIZE', x.size())
|
210 |
+
output = []
|
211 |
+
# new batch size for it here
|
212 |
+
b, c, hh, hw = x.size()
|
213 |
+
|
214 |
+
# okay ugh, what is this all doing ...
|
215 |
+
# i mean you could concat each of those in a llok
|
216 |
+
out_channel = c * (scale**2)
|
217 |
+
assert hh % scale == 0 and hw % scale == 0
|
218 |
+
h = hh // scale
|
219 |
+
w = hw // scale
|
220 |
+
x_view = x.view(b, c, h, scale, w, scale)
|
221 |
+
x_view = x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w)
|
222 |
+
|
223 |
+
# output = torch.stack(output)
|
224 |
+
print('output shape', x_view.shape)
|
225 |
+
# 1/0
|
226 |
+
return x_view
|
227 |
+
|
228 |
+
|
229 |
+
import os
|
230 |
+
import torch
|
231 |
+
from torch.nn import functional as F
|
232 |
+
from PIL import Image
|
233 |
+
import numpy as np
|
234 |
+
from huggingface_hub import hf_hub_url, cached_download
|
235 |
+
|
236 |
+
|
237 |
+
HF_MODELS = {
|
238 |
+
2: dict(
|
239 |
+
repo_id='sberbank-ai/Real-ESRGAN',
|
240 |
+
filename='RealESRGAN_x2.pth',
|
241 |
+
),
|
242 |
+
4: dict(
|
243 |
+
repo_id='sberbank-ai/Real-ESRGAN',
|
244 |
+
filename='RealESRGAN_x4.pth',
|
245 |
+
),
|
246 |
+
8: dict(
|
247 |
+
repo_id='sberbank-ai/Real-ESRGAN',
|
248 |
+
filename='RealESRGAN_x8.pth',
|
249 |
+
),
|
250 |
+
}
|
251 |
+
|
252 |
+
|
253 |
+
class RealESRGAN:
|
254 |
+
def __init__(self, device, scale=4):
|
255 |
+
self.device = device
|
256 |
+
self.scale = scale
|
257 |
+
self.model = RRDBNet(
|
258 |
+
num_in_ch=3, num_out_ch=3, num_feat=64,
|
259 |
+
num_block=23, num_grow_ch=32, scale=scale
|
260 |
+
)
|
261 |
+
|
262 |
+
def load_weights(self, model_path, download=True):
|
263 |
+
if not os.path.exists(model_path) and download:
|
264 |
+
assert self.scale in [2,4,8], 'You can download models only with scales: 2, 4, 8'
|
265 |
+
config = HF_MODELS[self.scale]
|
266 |
+
cache_dir = os.path.dirname(model_path)
|
267 |
+
local_filename = os.path.basename(model_path)
|
268 |
+
config_file_url = hf_hub_url(repo_id=config['repo_id'], filename=config['filename'])
|
269 |
+
cached_download(config_file_url, cache_dir=cache_dir, force_filename=local_filename)
|
270 |
+
print('Weights downloaded to:', os.path.join(cache_dir, local_filename))
|
271 |
+
|
272 |
+
loadnet = torch.load(model_path)
|
273 |
+
if 'params' in loadnet:
|
274 |
+
self.model.load_state_dict(loadnet['params'], strict=True)
|
275 |
+
elif 'params_ema' in loadnet:
|
276 |
+
self.model.load_state_dict(loadnet['params_ema'], strict=True)
|
277 |
+
else:
|
278 |
+
self.model.load_state_dict(loadnet, strict=True)
|
279 |
+
self.model.eval()
|
280 |
+
self.model.to(self.device)
|
281 |
+
|
282 |
+
@torch.cuda.amp.autocast()
|
283 |
+
def predict(self, numpy_images, batch_size=4, patches_size=192,
|
284 |
+
padding=24, pad_size=15):
|
285 |
+
import time
|
286 |
+
start = time.time()
|
287 |
+
# okay i think that's good with variability for now ...
|
288 |
+
# ***IMPORTANT VARIABLE***
|
289 |
+
batch_size = len(numpy_images) * 4
|
290 |
+
scale = self.scale
|
291 |
+
device = self.device
|
292 |
+
|
293 |
+
list_of_inputs = []
|
294 |
+
for lr_image in numpy_images:
|
295 |
+
lr_image = np.array(lr_image)
|
296 |
+
lr_image = pad_reflect(lr_image, pad_size)
|
297 |
+
|
298 |
+
patches, p_shape = split_image_into_overlapping_patches(
|
299 |
+
lr_image, patch_size=patches_size, padding_size=padding
|
300 |
+
)
|
301 |
+
|
302 |
+
print('patches.shape', patches.shape)
|
303 |
+
print('p_shape', p_shape)
|
304 |
+
|
305 |
+
img = torch.FloatTensor(patches/255).permute((0,3,1,2)).to(device).detach()
|
306 |
+
list_of_inputs.append(img)
|
307 |
+
|
308 |
+
|
309 |
+
input_batch = torch.concat(list_of_inputs)
|
310 |
+
|
311 |
+
print('input_batch.shape', input_batch.shape)
|
312 |
+
|
313 |
+
|
314 |
+
with torch.no_grad():
|
315 |
+
# res = self.model(input_batch[0:batch_size])
|
316 |
+
|
317 |
+
# okay what does the input size really need to be?
|
318 |
+
|
319 |
+
print('input_batch.shape', input_batch.shape)
|
320 |
+
print('input_batch[0:batch_size].shape', input_batch[0:batch_size].shape)
|
321 |
+
# 1/0
|
322 |
+
res = self.model(input_batch[0:batch_size])
|
323 |
+
|
324 |
+
print('res.shape 1', res.shape)
|
325 |
+
print('batch_size', batch_size)
|
326 |
+
# 1/0
|
327 |
+
for i in range(batch_size, img.shape[0], batch_size):
|
328 |
+
print('i is', i)
|
329 |
+
res = torch.cat((res, self.model(img[i:i+batch_size])), 0)
|
330 |
+
print('res.shape 2', res.shape)
|
331 |
+
|
332 |
+
print('res.shape 3', res.shape)
|
333 |
+
|
334 |
+
# 1/0
|
335 |
+
|
336 |
+
sr_image = res.permute((0,2,3,1)).clamp_(0, 1).cpu()
|
337 |
+
np_sr_image_batch = sr_image.numpy()
|
338 |
+
|
339 |
+
print('np_sr_image_batch.shape', np_sr_image_batch.shape)
|
340 |
+
print('np_sr_image_batch[0].shape', np_sr_image_batch[0].shape)
|
341 |
+
# 1/0
|
342 |
+
|
343 |
+
padded_size_scaled = tuple(np.multiply(p_shape[0:2], scale)) + (3,)
|
344 |
+
|
345 |
+
output_images = []
|
346 |
+
for i in range(0,batch_size,4):
|
347 |
+
# get first time from original input image size
|
348 |
+
scaled_image_shape = tuple(np.multiply(lr_image.shape[0:2], scale)) + (3,)
|
349 |
+
print('scaled_image_shape', scaled_image_shape)
|
350 |
+
print('padded_size_scaled', padded_size_scaled)
|
351 |
+
print("padding * scale", padding * scale)
|
352 |
+
np_sr_image = stich_together(
|
353 |
+
np_sr_image_batch[i:i+4], padded_image_shape=padded_size_scaled,
|
354 |
+
target_shape=scaled_image_shape, padding_size=padding * scale
|
355 |
+
)
|
356 |
+
sr_img = (np_sr_image*255).astype(np.uint8)
|
357 |
+
print('sr_img.shape', sr_img.shape)
|
358 |
+
sr_img = unpad_image(sr_img, pad_size*scale)
|
359 |
+
sr_img = Image.fromarray(sr_img)
|
360 |
+
output_images.append(sr_img)
|
361 |
+
|
362 |
+
print('len of output_images', len(output_images))
|
363 |
+
|
364 |
+
# for debugging
|
365 |
+
# for idx, image in enumerate(output_images):
|
366 |
+
# image.save(f'output_image_{idx}.png')
|
367 |
+
|
368 |
+
|
369 |
+
print("EVERYTHING TOOK", time.time() - start)
|
370 |
+
|
371 |
+
return output_images
|
372 |
+
|
373 |
+
|
374 |
+
import torch
|
375 |
+
from torch import nn as nn
|
376 |
+
from torch.nn import functional as F
|
377 |
+
|
378 |
+
|
379 |
+
class ResidualDenseBlock(nn.Module):
|
380 |
+
"""Residual Dense Block.
|
381 |
+
|
382 |
+
Used in RRDB block in ESRGAN.
|
383 |
+
|
384 |
+
Args:
|
385 |
+
num_feat (int): Channel number of intermediate features.
|
386 |
+
num_grow_ch (int): Channels for each growth.
|
387 |
+
"""
|
388 |
+
|
389 |
+
def __init__(self, num_feat=64, num_grow_ch=32):
|
390 |
+
super(ResidualDenseBlock, self).__init__()
|
391 |
+
self.conv1 = nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1)
|
392 |
+
self.conv2 = nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1)
|
393 |
+
self.conv3 = nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1)
|
394 |
+
self.conv4 = nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1)
|
395 |
+
self.conv5 = nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1)
|
396 |
+
|
397 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
398 |
+
|
399 |
+
# initialization
|
400 |
+
default_init_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
|
401 |
+
|
402 |
+
def forward(self, x):
|
403 |
+
x1 = self.lrelu(self.conv1(x))
|
404 |
+
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
|
405 |
+
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
|
406 |
+
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
|
407 |
+
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
|
408 |
+
# Emperically, we use 0.2 to scale the residual for better performance
|
409 |
+
return x5 * 0.2 + x
|
410 |
+
|
411 |
+
|
412 |
+
class RRDB(nn.Module):
|
413 |
+
"""Residual in Residual Dense Block.
|
414 |
+
|
415 |
+
Used in RRDB-Net in ESRGAN.
|
416 |
+
|
417 |
+
Args:
|
418 |
+
num_feat (int): Channel number of intermediate features.
|
419 |
+
num_grow_ch (int): Channels for each growth.
|
420 |
+
"""
|
421 |
+
|
422 |
+
def __init__(self, num_feat, num_grow_ch=32):
|
423 |
+
super(RRDB, self).__init__()
|
424 |
+
self.rdb1 = ResidualDenseBlock(num_feat, num_grow_ch)
|
425 |
+
self.rdb2 = ResidualDenseBlock(num_feat, num_grow_ch)
|
426 |
+
self.rdb3 = ResidualDenseBlock(num_feat, num_grow_ch)
|
427 |
+
|
428 |
+
def forward(self, x):
|
429 |
+
# this part happens 23 times per pass
|
430 |
+
out = self.rdb1(x)
|
431 |
+
out = self.rdb2(out)
|
432 |
+
out = self.rdb3(out)
|
433 |
+
# Emperically, we use 0.2 to scale the residual for better performance
|
434 |
+
return out * 0.2 + x
|
435 |
+
|
436 |
+
|
437 |
+
class RRDBNet(nn.Module):
|
438 |
+
"""Networks consisting of Residual in Residual Dense Block, which is used
|
439 |
+
in ESRGAN.
|
440 |
+
|
441 |
+
ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks.
|
442 |
+
|
443 |
+
We extend ESRGAN for scale x2 and scale x1.
|
444 |
+
Note: This is one option for scale 1, scale 2 in RRDBNet.
|
445 |
+
We first employ the pixel-unshuffle (an inverse operation of pixelshuffle to reduce the spatial size
|
446 |
+
and enlarge the channel size before feeding inputs into the main ESRGAN architecture.
|
447 |
+
|
448 |
+
Args:
|
449 |
+
num_in_ch (int): Channel number of inputs.
|
450 |
+
num_out_ch (int): Channel number of outputs.
|
451 |
+
num_feat (int): Channel number of intermediate features.
|
452 |
+
Default: 64
|
453 |
+
num_block (int): Block number in the trunk network. Defaults: 23
|
454 |
+
num_grow_ch (int): Channels for each growth. Default: 32.
|
455 |
+
"""
|
456 |
+
|
457 |
+
def __init__(self, num_in_ch, num_out_ch, scale=4, num_feat=64, num_block=23, num_grow_ch=32):
|
458 |
+
super(RRDBNet, self).__init__()
|
459 |
+
|
460 |
+
self.scale = scale
|
461 |
+
if scale == 2:
|
462 |
+
num_in_ch = num_in_ch * 4
|
463 |
+
elif scale == 1:
|
464 |
+
num_in_ch = num_in_ch * 16
|
465 |
+
|
466 |
+
print('num_in_ch', num_in_ch)
|
467 |
+
|
468 |
+
self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
|
469 |
+
self.body = make_layer(RRDB, num_block, num_feat=num_feat, num_grow_ch=num_grow_ch)
|
470 |
+
self.conv_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
471 |
+
# upsample
|
472 |
+
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
473 |
+
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
474 |
+
if scale == 8:
|
475 |
+
self.conv_up3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
476 |
+
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
477 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
478 |
+
|
479 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
480 |
+
|
481 |
+
def forward(self, x):
|
482 |
+
print('IN FORWARD, X.shape is', x.shape)
|
483 |
+
if self.scale == 2:
|
484 |
+
feat = pixel_unshuffle(x, scale=2)
|
485 |
+
elif self.scale == 1:
|
486 |
+
feat = pixel_unshuffle(x, scale=4)
|
487 |
+
else:
|
488 |
+
feat = x
|
489 |
+
print('feat shape', feat.shape)
|
490 |
+
# breaks here ...
|
491 |
+
feat = self.conv_first(feat)
|
492 |
+
body_feat = self.conv_body(self.body(feat))
|
493 |
+
feat = feat + body_feat
|
494 |
+
# upsample
|
495 |
+
feat = self.lrelu(self.conv_up1(F.interpolate(feat, scale_factor=2, mode='nearest')))
|
496 |
+
feat = self.lrelu(self.conv_up2(F.interpolate(feat, scale_factor=2, mode='nearest')))
|
497 |
+
if self.scale == 8:
|
498 |
+
feat = self.lrelu(self.conv_up3(F.interpolate(feat, scale_factor=2, mode='nearest')))
|
499 |
+
out = self.conv_last(self.lrelu(self.conv_hr(feat)))
|
500 |
+
return out
|
501 |
+
|
502 |
+
import numpy as np
|
503 |
+
import torch
|
504 |
+
from PIL import Image
|
505 |
+
import os
|
506 |
+
import io
|
507 |
+
|
508 |
+
def pad_reflect(image, pad_size):
|
509 |
+
imsize = image.shape
|
510 |
+
height, width = imsize[:2]
|
511 |
+
print('imsize', imsize)
|
512 |
+
new_img = np.zeros([height+pad_size*2, width+pad_size*2, imsize[2]]).astype(np.uint8)
|
513 |
+
new_img[pad_size:-pad_size, pad_size:-pad_size, :] = image
|
514 |
+
print('new_img.shape 1', new_img.shape)
|
515 |
+
|
516 |
+
new_img[0:pad_size, pad_size:-pad_size, :] = np.flip(image[0:pad_size, :, :], axis=0) #top
|
517 |
+
new_img[-pad_size:, pad_size:-pad_size, :] = np.flip(image[-pad_size:, :, :], axis=0) #bottom
|
518 |
+
new_img[:, 0:pad_size, :] = np.flip(new_img[:, pad_size:pad_size*2, :], axis=1) #left
|
519 |
+
new_img[:, -pad_size:, :] = np.flip(new_img[:, -pad_size*2:-pad_size, :], axis=1) #right
|
520 |
+
print('new_img.shape 2', new_img.shape)
|
521 |
+
|
522 |
+
return new_img
|
523 |
+
|
524 |
+
def unpad_image(image, pad_size):
|
525 |
+
return image[pad_size:-pad_size, pad_size:-pad_size, :]
|
526 |
+
|
527 |
+
|
528 |
+
def process_array(image_array, expand=True):
|
529 |
+
""" Process a 3-dimensional array into a scaled, 4 dimensional batch of size 1. """
|
530 |
+
|
531 |
+
image_batch = image_array / 255.0
|
532 |
+
if expand:
|
533 |
+
image_batch = np.expand_dims(image_batch, axis=0)
|
534 |
+
return image_batch
|
535 |
+
|
536 |
+
|
537 |
+
def process_output(output_tensor):
|
538 |
+
""" Transforms the 4-dimensional output tensor into a suitable image format. """
|
539 |
+
|
540 |
+
sr_img = output_tensor.clip(0, 1) * 255
|
541 |
+
sr_img = np.uint8(sr_img)
|
542 |
+
return sr_img
|
543 |
+
|
544 |
+
|
545 |
+
def pad_patch(image_patch, padding_size, channel_last=True):
|
546 |
+
""" Pads image_patch with with padding_size edge values. """
|
547 |
+
|
548 |
+
if channel_last:
|
549 |
+
return np.pad(
|
550 |
+
image_patch,
|
551 |
+
((padding_size, padding_size), (padding_size, padding_size), (0, 0)),
|
552 |
+
'edge',
|
553 |
+
)
|
554 |
+
else:
|
555 |
+
return np.pad(
|
556 |
+
image_patch,
|
557 |
+
((0, 0), (padding_size, padding_size), (padding_size, padding_size)),
|
558 |
+
'edge',
|
559 |
+
)
|
560 |
+
|
561 |
+
|
562 |
+
def unpad_patches(image_patches, padding_size):
|
563 |
+
return image_patches[:, padding_size:-padding_size, padding_size:-padding_size, :]
|
564 |
+
|
565 |
+
|
566 |
+
def split_image_into_overlapping_patches(image_array, patch_size, padding_size=2):
|
567 |
+
""" Splits the image into partially overlapping patches.
|
568 |
+
The patches overlap by padding_size pixels.
|
569 |
+
Pads the image twice:
|
570 |
+
- first to have a size multiple of the patch size,
|
571 |
+
- then to have equal padding at the borders.
|
572 |
+
Args:
|
573 |
+
image_array: numpy array of the input image.
|
574 |
+
patch_size: size of the patches from the original image (without padding).
|
575 |
+
padding_size: size of the overlapping area.
|
576 |
+
"""
|
577 |
+
|
578 |
+
xmax, ymax, _ = image_array.shape
|
579 |
+
x_remainder = xmax % patch_size
|
580 |
+
y_remainder = ymax % patch_size
|
581 |
+
|
582 |
+
# modulo here is to avoid extending of patch_size instead of 0
|
583 |
+
x_extend = (patch_size - x_remainder) % patch_size
|
584 |
+
y_extend = (patch_size - y_remainder) % patch_size
|
585 |
+
|
586 |
+
# make sure the image is divisible into regular patches
|
587 |
+
extended_image = np.pad(image_array, ((0, x_extend), (0, y_extend), (0, 0)), 'edge')
|
588 |
+
|
589 |
+
# add padding around the image to simplify computations
|
590 |
+
padded_image = pad_patch(extended_image, padding_size, channel_last=True)
|
591 |
+
|
592 |
+
xmax, ymax, _ = padded_image.shape
|
593 |
+
patches = []
|
594 |
+
|
595 |
+
x_lefts = range(padding_size, xmax - padding_size, patch_size)
|
596 |
+
y_tops = range(padding_size, ymax - padding_size, patch_size)
|
597 |
+
|
598 |
+
for x in x_lefts:
|
599 |
+
for y in y_tops:
|
600 |
+
x_left = x - padding_size
|
601 |
+
y_top = y - padding_size
|
602 |
+
x_right = x + patch_size + padding_size
|
603 |
+
y_bottom = y + patch_size + padding_size
|
604 |
+
patch = padded_image[x_left:x_right, y_top:y_bottom, :]
|
605 |
+
patches.append(patch)
|
606 |
+
|
607 |
+
return np.array(patches), padded_image.shape
|
608 |
+
|
609 |
+
|
610 |
+
def stich_together(patches, padded_image_shape, target_shape, padding_size=4):
|
611 |
+
""" Reconstruct the image from overlapping patches.
|
612 |
+
After scaling, shapes and padding should be scaled too.
|
613 |
+
Args:
|
614 |
+
patches: patches obtained with split_image_into_overlapping_patches
|
615 |
+
padded_image_shape: shape of the padded image contructed in split_image_into_overlapping_patches
|
616 |
+
target_shape: shape of the final image
|
617 |
+
padding_size: size of the overlapping area.
|
618 |
+
"""
|
619 |
+
|
620 |
+
xmax, ymax, _ = padded_image_shape
|
621 |
+
patches = unpad_patches(patches, padding_size)
|
622 |
+
patch_size = patches.shape[1]
|
623 |
+
n_patches_per_row = ymax // patch_size
|
624 |
+
|
625 |
+
complete_image = np.zeros((xmax, ymax, 3))
|
626 |
+
|
627 |
+
row = -1
|
628 |
+
col = 0
|
629 |
+
for i in range(len(patches)):
|
630 |
+
if i % n_patches_per_row == 0:
|
631 |
+
row += 1
|
632 |
+
col = 0
|
633 |
+
complete_image[
|
634 |
+
row * patch_size: (row + 1) * patch_size, col * patch_size: (col + 1) * patch_size,:
|
635 |
+
] = patches[i]
|
636 |
+
col += 1
|
637 |
+
return complete_image[0: target_shape[0], 0: target_shape[1], :]
|
638 |
+
|
639 |
|
640 |
|
641 |
class EndpointHandler():
|
|
|
654 |
A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82}
|
655 |
"""
|
656 |
inputs = data.pop("inputs", data)
|
657 |
+
if isinstance(inputs['image'], list) and len(inputs['image']) > 1:
|
658 |
+
input_images = []
|
659 |
+
for base64_string in inputs['image']:
|
660 |
+
image = Image.open(BytesIO(base64.b64decode(base64_string)))
|
661 |
+
input_images.append(image)
|
662 |
+
|
663 |
+
for i in range(len(input_images)):
|
664 |
+
input_images[i] = input_images[i].resize((194, 250))
|
665 |
+
|
666 |
+
numpy_images = [np.array(img) for img in input_images]
|
667 |
+
output_images = self.model.predict(numpy_images)
|
668 |
+
|
669 |
+
base64_strings = []
|
670 |
+
for output_image in output_images:
|
671 |
+
buffered = BytesIO()
|
672 |
+
output_image = output_image.convert('RGB')
|
673 |
+
output_image.save(buffered, format="png")
|
674 |
+
img_str = base64.b64encode(buffered.getvalue())
|
675 |
+
base64_strings.append(img_str)
|
676 |
+
|
677 |
+
return base64_strings
|
678 |
+
|
679 |
+
else:
|
680 |
+
inputs = data.pop("inputs", data)
|
681 |
|
682 |
+
# decode base64 image to PIL
|
683 |
+
image = Image.open(BytesIO(base64.b64decode(inputs['image'])))
|
684 |
|
685 |
+
# forward pass
|
686 |
+
output_image = self.model.predict(image)
|
687 |
|
688 |
+
# base64 encode output
|
689 |
+
buffered = BytesIO()
|
690 |
+
output_image = output_image.convert('RGB')
|
691 |
+
output_image.save(buffered, format="png")
|
692 |
+
img_str = base64.b64encode(buffered.getvalue())
|
693 |
|
694 |
+
# postprocess the prediction
|
695 |
+
return {"image": img_str.decode()}
|
local_test.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from handler import EndpointHandler
|
2 |
+
import json
|
3 |
+
|
4 |
+
# init handler
|
5 |
+
my_handler = EndpointHandler(path=".")
|
6 |
+
|
7 |
+
import base64
|
8 |
+
|
9 |
+
# prepare sample payload
|
10 |
+
# non_holiday_payload = {"inputs": "I am quite excited how this will turn out", "date": "2022-08-08"}
|
11 |
+
# holiday_payload = {"inputs": "Today is a though day", "date": "2022-07-04"}
|
12 |
+
|
13 |
+
# with open('sample_input.json', 'r') as file:
|
14 |
+
# data = json.load(file)
|
15 |
+
import io
|
16 |
+
from PIL import Image
|
17 |
+
import requests
|
18 |
+
response = requests.get('https://mystore-12345-product-images.s3-us-east-2.amazonaws.com/0c817b58-2774-4f02-95b8-3ae379aa2e98.jpeg')
|
19 |
+
image = Image.open(io.BytesIO(response.content)).convert('RGB')
|
20 |
+
|
21 |
+
response2 = requests.get('https://mystore-12345-product-images.s3-us-east-2.amazonaws.com/3b9c698b-b7ae-4c5d-a978-2179ccc08d12.jpeg')
|
22 |
+
image2 = Image.open(io.BytesIO(response2.content)).convert('RGB')
|
23 |
+
|
24 |
+
response3 = requests.get('https://mystore-12345-product-images.s3-us-east-2.amazonaws.com/72801dfa-5d6a-442e-91cd-80bdb394a323.jpeg')
|
25 |
+
image3 = Image.open(io.BytesIO(response3.content)).convert('RGB')
|
26 |
+
|
27 |
+
pil_images = [image.copy() for i in range(10)]
|
28 |
+
pil_images[1] = image2.copy()
|
29 |
+
pil_images[2] = image3.copy()
|
30 |
+
|
31 |
+
base64_strings = []
|
32 |
+
for output_image in pil_images:
|
33 |
+
buffered = io.BytesIO()
|
34 |
+
output_image = output_image.convert('RGB')
|
35 |
+
output_image.save(buffered, format="png")
|
36 |
+
img_str = base64.b64encode(buffered.getvalue())
|
37 |
+
base64_strings.append(img_str)
|
38 |
+
|
39 |
+
inputs = {
|
40 |
+
'image': base64_strings
|
41 |
+
}
|
42 |
+
|
43 |
+
|
44 |
+
# test the handler
|
45 |
+
import time
|
46 |
+
start = time.time()
|
47 |
+
prediction=my_handler(inputs)
|
48 |
+
# holiday_payload=my_handler(holiday_payload)
|
49 |
+
print("inference time itself is", time.time() - start)
|
50 |
+
|
51 |
+
# show results
|
52 |
+
# print("prediction", prediction)
|
53 |
+
|
54 |
+
print("type of prediction", type(prediction))
|
55 |
+
|
56 |
+
data_json = prediction
|
57 |
+
|
58 |
+
|
59 |
+
print("type of prediction", data_json.keys())
|
60 |
+
|
61 |
+
img_str = data_json['image']
|
output_image_0.png
ADDED
output_image_1.png
ADDED
output_image_2.png
ADDED
output_image_3.png
ADDED
output_image_4.png
ADDED
output_image_5.png
ADDED
output_image_6.png
ADDED
output_image_7.png
ADDED
output_image_8.png
ADDED
output_image_9.png
ADDED