|
|
|
|
|
|
|
from typing import Dict, List, Any |
|
from PIL import Image |
|
from io import BytesIO |
|
from transformers import AutoModelForSemanticSegmentation, AutoFeatureExtractor |
|
import base64 |
|
import torch |
|
from torch import nn |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
import torch |
|
from torch import nn as nn |
|
from torch.nn import functional as F |
|
from torch.nn import init as init |
|
from torch.nn.modules.batchnorm import _BatchNorm |
|
|
|
@torch.no_grad() |
|
def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs): |
|
"""Initialize network weights. |
|
|
|
Args: |
|
module_list (list[nn.Module] | nn.Module): Modules to be initialized. |
|
scale (float): Scale initialized weights, especially for residual |
|
blocks. Default: 1. |
|
bias_fill (float): The value to fill bias. Default: 0 |
|
kwargs (dict): Other arguments for initialization function. |
|
""" |
|
if not isinstance(module_list, list): |
|
module_list = [module_list] |
|
for module in module_list: |
|
for m in module.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
init.kaiming_normal_(m.weight, **kwargs) |
|
m.weight.data *= scale |
|
if m.bias is not None: |
|
m.bias.data.fill_(bias_fill) |
|
elif isinstance(m, nn.Linear): |
|
init.kaiming_normal_(m.weight, **kwargs) |
|
m.weight.data *= scale |
|
if m.bias is not None: |
|
m.bias.data.fill_(bias_fill) |
|
elif isinstance(m, _BatchNorm): |
|
init.constant_(m.weight, 1) |
|
if m.bias is not None: |
|
m.bias.data.fill_(bias_fill) |
|
|
|
|
|
def make_layer(basic_block, num_basic_block, **kwarg): |
|
"""Make layers by stacking the same blocks. |
|
|
|
Args: |
|
basic_block (nn.module): nn.module class for basic block. |
|
num_basic_block (int): number of blocks. |
|
|
|
Returns: |
|
nn.Sequential: Stacked blocks in nn.Sequential. |
|
""" |
|
layers = [] |
|
for _ in range(num_basic_block): |
|
layers.append(basic_block(**kwarg)) |
|
return nn.Sequential(*layers) |
|
|
|
|
|
|
|
class ResidualBlockNoBN(nn.Module): |
|
"""Residual block without BN. |
|
|
|
It has a style of: |
|
---Conv-ReLU-Conv-+- |
|
|________________| |
|
|
|
Args: |
|
num_feat (int): Channel number of intermediate features. |
|
Default: 64. |
|
res_scale (float): Residual scale. Default: 1. |
|
pytorch_init (bool): If set to True, use pytorch default init, |
|
otherwise, use default_init_weights. Default: False. |
|
""" |
|
|
|
def __init__(self, num_feat=64, res_scale=1, pytorch_init=False): |
|
super(ResidualBlockNoBN, self).__init__() |
|
self.res_scale = res_scale |
|
self.conv1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True) |
|
self.conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
if not pytorch_init: |
|
default_init_weights([self.conv1, self.conv2], 0.1) |
|
|
|
def forward(self, x): |
|
identity = x |
|
out = self.conv2(self.relu(self.conv1(x))) |
|
return identity + out * self.res_scale |
|
|
|
|
|
class Upsample(nn.Sequential): |
|
"""Upsample module. |
|
|
|
Args: |
|
scale (int): Scale factor. Supported scales: 2^n and 3. |
|
num_feat (int): Channel number of intermediate features. |
|
""" |
|
|
|
def __init__(self, scale, num_feat): |
|
m = [] |
|
if (scale & (scale - 1)) == 0: |
|
for _ in range(int(math.log(scale, 2))): |
|
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) |
|
m.append(nn.PixelShuffle(2)) |
|
elif scale == 3: |
|
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) |
|
m.append(nn.PixelShuffle(3)) |
|
else: |
|
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.') |
|
super(Upsample, self).__init__(*m) |
|
|
|
|
|
def flow_warp(x, flow, interp_mode='bilinear', padding_mode='zeros', align_corners=True): |
|
"""Warp an image or feature map with optical flow. |
|
|
|
Args: |
|
x (Tensor): Tensor with size (n, c, h, w). |
|
flow (Tensor): Tensor with size (n, h, w, 2), normal value. |
|
interp_mode (str): 'nearest' or 'bilinear'. Default: 'bilinear'. |
|
padding_mode (str): 'zeros' or 'border' or 'reflection'. |
|
Default: 'zeros'. |
|
align_corners (bool): Before pytorch 1.3, the default value is |
|
align_corners=True. After pytorch 1.3, the default value is |
|
align_corners=False. Here, we use the True as default. |
|
|
|
Returns: |
|
Tensor: Warped image or feature map. |
|
""" |
|
assert x.size()[-2:] == flow.size()[1:3] |
|
_, _, h, w = x.size() |
|
|
|
grid_y, grid_x = torch.meshgrid(torch.arange(0, h).type_as(x), torch.arange(0, w).type_as(x)) |
|
grid = torch.stack((grid_x, grid_y), 2).float() |
|
grid.requires_grad = False |
|
|
|
vgrid = grid + flow |
|
|
|
vgrid_x = 2.0 * vgrid[:, :, :, 0] / max(w - 1, 1) - 1.0 |
|
vgrid_y = 2.0 * vgrid[:, :, :, 1] / max(h - 1, 1) - 1.0 |
|
vgrid_scaled = torch.stack((vgrid_x, vgrid_y), dim=3) |
|
output = F.grid_sample(x, vgrid_scaled, mode=interp_mode, padding_mode=padding_mode, align_corners=align_corners) |
|
|
|
|
|
return output |
|
|
|
|
|
def resize_flow(flow, size_type, sizes, interp_mode='bilinear', align_corners=False): |
|
"""Resize a flow according to ratio or shape. |
|
|
|
Args: |
|
flow (Tensor): Precomputed flow. shape [N, 2, H, W]. |
|
size_type (str): 'ratio' or 'shape'. |
|
sizes (list[int | float]): the ratio for resizing or the final output |
|
shape. |
|
1) The order of ratio should be [ratio_h, ratio_w]. For |
|
downsampling, the ratio should be smaller than 1.0 (i.e., ratio |
|
< 1.0). For upsampling, the ratio should be larger than 1.0 (i.e., |
|
ratio > 1.0). |
|
2) The order of output_size should be [out_h, out_w]. |
|
interp_mode (str): The mode of interpolation for resizing. |
|
Default: 'bilinear'. |
|
align_corners (bool): Whether align corners. Default: False. |
|
|
|
Returns: |
|
Tensor: Resized flow. |
|
""" |
|
_, _, flow_h, flow_w = flow.size() |
|
if size_type == 'ratio': |
|
output_h, output_w = int(flow_h * sizes[0]), int(flow_w * sizes[1]) |
|
elif size_type == 'shape': |
|
output_h, output_w = sizes[0], sizes[1] |
|
else: |
|
raise ValueError(f'Size type should be ratio or shape, but got type {size_type}.') |
|
|
|
input_flow = flow.clone() |
|
ratio_h = output_h / flow_h |
|
ratio_w = output_w / flow_w |
|
input_flow[:, 0, :, :] *= ratio_w |
|
input_flow[:, 1, :, :] *= ratio_h |
|
resized_flow = F.interpolate( |
|
input=input_flow, size=(output_h, output_w), mode=interp_mode, align_corners=align_corners) |
|
return resized_flow |
|
|
|
|
|
|
|
def pixel_unshuffle(x, scale): |
|
""" Pixel unshuffle. |
|
|
|
Args: |
|
x (Tensor): Input feature with shape (b, c, hh, hw). |
|
scale (int): Downsample ratio. |
|
|
|
Returns: |
|
Tensor: the pixel unshuffled feature. |
|
""" |
|
print('PIXEL UNSHUFFLE X SIZE', x.size()) |
|
output = [] |
|
|
|
b, c, hh, hw = x.size() |
|
|
|
|
|
|
|
out_channel = c * (scale**2) |
|
assert hh % scale == 0 and hw % scale == 0 |
|
h = hh // scale |
|
w = hw // scale |
|
x_view = x.view(b, c, h, scale, w, scale) |
|
x_view = x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w) |
|
|
|
|
|
|
|
|
|
return x_view |
|
|
|
|
|
import os |
|
import torch |
|
from torch.nn import functional as F |
|
from PIL import Image |
|
import numpy as np |
|
from huggingface_hub import hf_hub_url, cached_download |
|
|
|
|
|
HF_MODELS = { |
|
2: dict( |
|
repo_id='sberbank-ai/Real-ESRGAN', |
|
filename='RealESRGAN_x2.pth', |
|
), |
|
4: dict( |
|
repo_id='sberbank-ai/Real-ESRGAN', |
|
filename='RealESRGAN_x4.pth', |
|
), |
|
8: dict( |
|
repo_id='sberbank-ai/Real-ESRGAN', |
|
filename='RealESRGAN_x8.pth', |
|
), |
|
} |
|
|
|
|
|
class RealESRGAN: |
|
def __init__(self, device, scale=4): |
|
self.device = device |
|
self.scale = scale |
|
self.model = RRDBNet( |
|
num_in_ch=3, num_out_ch=3, num_feat=64, |
|
num_block=23, num_grow_ch=32, scale=scale |
|
) |
|
|
|
def load_weights(self, model_path, download=True): |
|
if not os.path.exists(model_path) and download: |
|
assert self.scale in [2,4,8], 'You can download models only with scales: 2, 4, 8' |
|
config = HF_MODELS[self.scale] |
|
cache_dir = os.path.dirname(model_path) |
|
local_filename = os.path.basename(model_path) |
|
config_file_url = hf_hub_url(repo_id=config['repo_id'], filename=config['filename']) |
|
cached_download(config_file_url, cache_dir=cache_dir, force_filename=local_filename) |
|
print('Weights downloaded to:', os.path.join(cache_dir, local_filename)) |
|
|
|
loadnet = torch.load(model_path) |
|
if 'params' in loadnet: |
|
self.model.load_state_dict(loadnet['params'], strict=True) |
|
elif 'params_ema' in loadnet: |
|
self.model.load_state_dict(loadnet['params_ema'], strict=True) |
|
else: |
|
self.model.load_state_dict(loadnet, strict=True) |
|
self.model.eval() |
|
self.model.to(self.device) |
|
|
|
@torch.cuda.amp.autocast() |
|
def predict(self, numpy_images, batch_size=4, patches_size=192, |
|
padding=24, pad_size=15): |
|
import time |
|
start = time.time() |
|
|
|
|
|
batch_size = len(numpy_images) * 4 |
|
scale = self.scale |
|
device = self.device |
|
|
|
list_of_inputs = [] |
|
for lr_image in numpy_images: |
|
lr_image = np.array(lr_image) |
|
lr_image = pad_reflect(lr_image, pad_size) |
|
|
|
patches, p_shape = split_image_into_overlapping_patches( |
|
lr_image, patch_size=patches_size, padding_size=padding |
|
) |
|
|
|
|
|
|
|
|
|
img = torch.FloatTensor(patches/255).permute((0,3,1,2)).to(device).detach() |
|
list_of_inputs.append(img) |
|
|
|
|
|
input_batch = torch.concat(list_of_inputs) |
|
|
|
|
|
|
|
start2 = time.time() |
|
with torch.no_grad(): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
res = self.model(input_batch[0:batch_size]) |
|
|
|
|
|
|
|
|
|
for i in range(batch_size, img.shape[0], batch_size): |
|
print('i is', i) |
|
res = torch.cat((res, self.model(img[i:i+batch_size])), 0) |
|
|
|
print('inference alone takes', time.time() - start2) |
|
|
|
|
|
|
|
|
|
sr_image = res.permute((0,2,3,1)).clamp_(0, 1).cpu() |
|
np_sr_image_batch = sr_image.numpy() |
|
|
|
|
|
|
|
|
|
|
|
padded_size_scaled = tuple(np.multiply(p_shape[0:2], scale)) + (3,) |
|
|
|
output_images = [] |
|
for i in range(0,batch_size,4): |
|
|
|
scaled_image_shape = tuple(np.multiply(lr_image.shape[0:2], scale)) + (3,) |
|
|
|
|
|
|
|
np_sr_image = stich_together( |
|
np_sr_image_batch[i:i+4], padded_image_shape=padded_size_scaled, |
|
target_shape=scaled_image_shape, padding_size=padding * scale |
|
) |
|
sr_img = (np_sr_image*255).astype(np.uint8) |
|
|
|
sr_img = unpad_image(sr_img, pad_size*scale) |
|
sr_img = Image.fromarray(sr_img) |
|
output_images.append(sr_img) |
|
|
|
print('len of output_images', len(output_images)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
print("EVERYTHING TOOK", time.time() - start) |
|
|
|
return output_images |
|
|
|
|
|
import torch |
|
from torch import nn as nn |
|
from torch.nn import functional as F |
|
|
|
|
|
class ResidualDenseBlock(nn.Module): |
|
"""Residual Dense Block. |
|
|
|
Used in RRDB block in ESRGAN. |
|
|
|
Args: |
|
num_feat (int): Channel number of intermediate features. |
|
num_grow_ch (int): Channels for each growth. |
|
""" |
|
|
|
def __init__(self, num_feat=64, num_grow_ch=32): |
|
super(ResidualDenseBlock, self).__init__() |
|
self.conv1 = nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1) |
|
self.conv2 = nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1) |
|
self.conv3 = nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1) |
|
self.conv4 = nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1) |
|
self.conv5 = nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1) |
|
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) |
|
|
|
|
|
default_init_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1) |
|
|
|
def forward(self, x): |
|
x1 = self.lrelu(self.conv1(x)) |
|
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1))) |
|
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1))) |
|
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1))) |
|
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1)) |
|
|
|
return x5 * 0.2 + x |
|
|
|
|
|
class RRDB(nn.Module): |
|
"""Residual in Residual Dense Block. |
|
|
|
Used in RRDB-Net in ESRGAN. |
|
|
|
Args: |
|
num_feat (int): Channel number of intermediate features. |
|
num_grow_ch (int): Channels for each growth. |
|
""" |
|
|
|
def __init__(self, num_feat, num_grow_ch=32): |
|
super(RRDB, self).__init__() |
|
self.rdb1 = ResidualDenseBlock(num_feat, num_grow_ch) |
|
self.rdb2 = ResidualDenseBlock(num_feat, num_grow_ch) |
|
self.rdb3 = ResidualDenseBlock(num_feat, num_grow_ch) |
|
|
|
def forward(self, x): |
|
|
|
out = self.rdb1(x) |
|
out = self.rdb2(out) |
|
out = self.rdb3(out) |
|
|
|
return out * 0.2 + x |
|
|
|
|
|
class RRDBNet(nn.Module): |
|
"""Networks consisting of Residual in Residual Dense Block, which is used |
|
in ESRGAN. |
|
|
|
ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks. |
|
|
|
We extend ESRGAN for scale x2 and scale x1. |
|
Note: This is one option for scale 1, scale 2 in RRDBNet. |
|
We first employ the pixel-unshuffle (an inverse operation of pixelshuffle to reduce the spatial size |
|
and enlarge the channel size before feeding inputs into the main ESRGAN architecture. |
|
|
|
Args: |
|
num_in_ch (int): Channel number of inputs. |
|
num_out_ch (int): Channel number of outputs. |
|
num_feat (int): Channel number of intermediate features. |
|
Default: 64 |
|
num_block (int): Block number in the trunk network. Defaults: 23 |
|
num_grow_ch (int): Channels for each growth. Default: 32. |
|
""" |
|
|
|
def __init__(self, num_in_ch, num_out_ch, scale=4, num_feat=64, num_block=23, num_grow_ch=32): |
|
super(RRDBNet, self).__init__() |
|
|
|
self.scale = scale |
|
if scale == 2: |
|
num_in_ch = num_in_ch * 4 |
|
elif scale == 1: |
|
num_in_ch = num_in_ch * 16 |
|
|
|
print('num_in_ch', num_in_ch) |
|
|
|
self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1) |
|
self.body = make_layer(RRDB, num_block, num_feat=num_feat, num_grow_ch=num_grow_ch) |
|
self.conv_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1) |
|
|
|
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) |
|
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) |
|
if scale == 8: |
|
self.conv_up3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) |
|
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1) |
|
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) |
|
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) |
|
|
|
def forward(self, x): |
|
|
|
if self.scale == 2: |
|
feat = pixel_unshuffle(x, scale=2) |
|
elif self.scale == 1: |
|
feat = pixel_unshuffle(x, scale=4) |
|
else: |
|
feat = x |
|
|
|
|
|
feat = self.conv_first(feat) |
|
body_feat = self.conv_body(self.body(feat)) |
|
feat = feat + body_feat |
|
|
|
feat = self.lrelu(self.conv_up1(F.interpolate(feat, scale_factor=2, mode='nearest'))) |
|
feat = self.lrelu(self.conv_up2(F.interpolate(feat, scale_factor=2, mode='nearest'))) |
|
if self.scale == 8: |
|
feat = self.lrelu(self.conv_up3(F.interpolate(feat, scale_factor=2, mode='nearest'))) |
|
out = self.conv_last(self.lrelu(self.conv_hr(feat))) |
|
return out |
|
|
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
import os |
|
import io |
|
|
|
def pad_reflect(image, pad_size): |
|
imsize = image.shape |
|
height, width = imsize[:2] |
|
print('imsize', imsize) |
|
new_img = np.zeros([height+pad_size*2, width+pad_size*2, imsize[2]]).astype(np.uint8) |
|
new_img[pad_size:-pad_size, pad_size:-pad_size, :] = image |
|
|
|
|
|
new_img[0:pad_size, pad_size:-pad_size, :] = np.flip(image[0:pad_size, :, :], axis=0) |
|
new_img[-pad_size:, pad_size:-pad_size, :] = np.flip(image[-pad_size:, :, :], axis=0) |
|
new_img[:, 0:pad_size, :] = np.flip(new_img[:, pad_size:pad_size*2, :], axis=1) |
|
new_img[:, -pad_size:, :] = np.flip(new_img[:, -pad_size*2:-pad_size, :], axis=1) |
|
|
|
|
|
return new_img |
|
|
|
def unpad_image(image, pad_size): |
|
return image[pad_size:-pad_size, pad_size:-pad_size, :] |
|
|
|
|
|
def process_array(image_array, expand=True): |
|
""" Process a 3-dimensional array into a scaled, 4 dimensional batch of size 1. """ |
|
|
|
image_batch = image_array / 255.0 |
|
if expand: |
|
image_batch = np.expand_dims(image_batch, axis=0) |
|
return image_batch |
|
|
|
|
|
def process_output(output_tensor): |
|
""" Transforms the 4-dimensional output tensor into a suitable image format. """ |
|
|
|
sr_img = output_tensor.clip(0, 1) * 255 |
|
sr_img = np.uint8(sr_img) |
|
return sr_img |
|
|
|
|
|
def pad_patch(image_patch, padding_size, channel_last=True): |
|
""" Pads image_patch with with padding_size edge values. """ |
|
|
|
if channel_last: |
|
return np.pad( |
|
image_patch, |
|
((padding_size, padding_size), (padding_size, padding_size), (0, 0)), |
|
'edge', |
|
) |
|
else: |
|
return np.pad( |
|
image_patch, |
|
((0, 0), (padding_size, padding_size), (padding_size, padding_size)), |
|
'edge', |
|
) |
|
|
|
|
|
def unpad_patches(image_patches, padding_size): |
|
return image_patches[:, padding_size:-padding_size, padding_size:-padding_size, :] |
|
|
|
|
|
def split_image_into_overlapping_patches(image_array, patch_size, padding_size=2): |
|
""" Splits the image into partially overlapping patches. |
|
The patches overlap by padding_size pixels. |
|
Pads the image twice: |
|
- first to have a size multiple of the patch size, |
|
- then to have equal padding at the borders. |
|
Args: |
|
image_array: numpy array of the input image. |
|
patch_size: size of the patches from the original image (without padding). |
|
padding_size: size of the overlapping area. |
|
""" |
|
|
|
xmax, ymax, _ = image_array.shape |
|
x_remainder = xmax % patch_size |
|
y_remainder = ymax % patch_size |
|
|
|
|
|
x_extend = (patch_size - x_remainder) % patch_size |
|
y_extend = (patch_size - y_remainder) % patch_size |
|
|
|
|
|
extended_image = np.pad(image_array, ((0, x_extend), (0, y_extend), (0, 0)), 'edge') |
|
|
|
|
|
padded_image = pad_patch(extended_image, padding_size, channel_last=True) |
|
|
|
xmax, ymax, _ = padded_image.shape |
|
patches = [] |
|
|
|
x_lefts = range(padding_size, xmax - padding_size, patch_size) |
|
y_tops = range(padding_size, ymax - padding_size, patch_size) |
|
|
|
for x in x_lefts: |
|
for y in y_tops: |
|
x_left = x - padding_size |
|
y_top = y - padding_size |
|
x_right = x + patch_size + padding_size |
|
y_bottom = y + patch_size + padding_size |
|
patch = padded_image[x_left:x_right, y_top:y_bottom, :] |
|
patches.append(patch) |
|
|
|
return np.array(patches), padded_image.shape |
|
|
|
|
|
def stich_together(patches, padded_image_shape, target_shape, padding_size=4): |
|
""" Reconstruct the image from overlapping patches. |
|
After scaling, shapes and padding should be scaled too. |
|
Args: |
|
patches: patches obtained with split_image_into_overlapping_patches |
|
padded_image_shape: shape of the padded image contructed in split_image_into_overlapping_patches |
|
target_shape: shape of the final image |
|
padding_size: size of the overlapping area. |
|
""" |
|
|
|
xmax, ymax, _ = padded_image_shape |
|
patches = unpad_patches(patches, padding_size) |
|
patch_size = patches.shape[1] |
|
n_patches_per_row = ymax // patch_size |
|
|
|
complete_image = np.zeros((xmax, ymax, 3)) |
|
|
|
row = -1 |
|
col = 0 |
|
for i in range(len(patches)): |
|
if i % n_patches_per_row == 0: |
|
row += 1 |
|
col = 0 |
|
complete_image[ |
|
row * patch_size: (row + 1) * patch_size, col * patch_size: (col + 1) * patch_size,: |
|
] = patches[i] |
|
col += 1 |
|
return complete_image[0: target_shape[0], 0: target_shape[1], :] |
|
|
|
|
|
|
|
class EndpointHandler(): |
|
def __init__(self, path="."): |
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.model = RealESRGAN(self.device, scale=2) |
|
self.model.load_weights('/repository/RealESRGAN_x2.pth', download=True) |
|
|
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
images (:obj:`PIL.Image`) |
|
candiates (:obj:`list`) |
|
Return: |
|
A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82} |
|
""" |
|
inputs = data.pop("inputs", data) |
|
if isinstance(inputs['image'], list) and len(inputs['image']) > 1: |
|
input_images = [] |
|
for base64_string in inputs['image']: |
|
image = Image.open(BytesIO(base64.b64decode(base64_string))) |
|
input_images.append(image) |
|
|
|
for i in range(len(input_images)): |
|
input_images[i] = input_images[i].resize((194, 250)) |
|
|
|
numpy_images = [np.array(img) for img in input_images] |
|
output_images = self.model.predict(numpy_images) |
|
|
|
base64_strings = [] |
|
for output_image in output_images: |
|
buffered = BytesIO() |
|
output_image = output_image.convert('RGB') |
|
output_image.save(buffered, format="png") |
|
img_str = base64.b64encode(buffered.getvalue()) |
|
base64_strings.append(img_str.decode('utf-8')) |
|
|
|
return base64_strings |
|
|
|
else: |
|
inputs = data.pop("inputs", data) |
|
|
|
|
|
image = Image.open(BytesIO(base64.b64decode(inputs['image']))) |
|
|
|
|
|
output_image = self.model.predict(image) |
|
|
|
|
|
buffered = BytesIO() |
|
output_image = output_image.convert('RGB') |
|
output_image.save(buffered, format="png") |
|
img_str = base64.b64encode(buffered.getvalue()) |
|
|
|
|
|
return {"image": img_str.decode()} |