|
import copy
|
|
import math
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn import functional as F
|
|
|
|
from .commons import sequence_mask, rand_slice_segments
|
|
from .modules import ResidualCouplingLayer, WN, Flip, ResBlock1, ResBlock2, LRELU_SLOPE
|
|
|
|
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
|
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
|
from .commons import init_weights, get_padding
|
|
|
|
|
|
class ResidualCouplingBlock(nn.Module):
|
|
def __init__(self,
|
|
channels,
|
|
hidden_channels,
|
|
kernel_size,
|
|
dilation_rate,
|
|
n_layers,
|
|
n_flows=4,
|
|
gin_channels=0):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.hidden_channels = hidden_channels
|
|
self.kernel_size = kernel_size
|
|
self.dilation_rate = dilation_rate
|
|
self.n_layers = n_layers
|
|
self.n_flows = n_flows
|
|
self.gin_channels = gin_channels
|
|
|
|
self.flows = nn.ModuleList()
|
|
for i in range(n_flows):
|
|
self.flows.append(ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
|
|
self.flows.append(Flip())
|
|
|
|
def forward(self, x, x_mask, g=None, reverse=False):
|
|
if not reverse:
|
|
for flow in self.flows:
|
|
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
|
else:
|
|
for flow in reversed(self.flows):
|
|
x = flow(x, x_mask, g=g, reverse=reverse)
|
|
return x
|
|
|
|
|
|
class Encoder(nn.Module):
|
|
def __init__(self,
|
|
in_channels,
|
|
out_channels,
|
|
hidden_channels,
|
|
kernel_size,
|
|
dilation_rate,
|
|
n_layers,
|
|
gin_channels=0):
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
self.out_channels = out_channels
|
|
self.hidden_channels = hidden_channels
|
|
self.kernel_size = kernel_size
|
|
self.dilation_rate = dilation_rate
|
|
self.n_layers = n_layers
|
|
self.gin_channels = gin_channels
|
|
|
|
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
|
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
|
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
|
|
|
def forward(self, x, x_lengths, g=None):
|
|
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
|
x = self.pre(x) * x_mask
|
|
x = self.enc(x, x_mask, g=g)
|
|
stats = self.proj(x) * x_mask
|
|
m, logs = torch.split(stats, self.out_channels, dim=1)
|
|
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
|
return z, m, logs, x_mask
|
|
|
|
|
|
class Generator(torch.nn.Module):
|
|
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
|
|
super(Generator, self).__init__()
|
|
self.num_kernels = len(resblock_kernel_sizes)
|
|
self.num_upsamples = len(upsample_rates)
|
|
self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
|
|
resblock = ResBlock1 if resblock == '1' else ResBlock2
|
|
|
|
self.ups = nn.ModuleList()
|
|
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
|
self.ups.append(weight_norm(
|
|
ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
|
|
k, u, padding=(k-u)//2)))
|
|
|
|
self.resblocks = nn.ModuleList()
|
|
for i in range(len(self.ups)):
|
|
ch = upsample_initial_channel//(2**(i+1))
|
|
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
|
self.resblocks.append(resblock(ch, k, d))
|
|
|
|
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
|
self.ups.apply(init_weights)
|
|
|
|
if gin_channels != 0:
|
|
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
|
|
|
def forward(self, x, g=None):
|
|
x = self.conv_pre(x)
|
|
if g is not None:
|
|
x = x + self.cond(g)
|
|
|
|
for i in range(self.num_upsamples):
|
|
x = F.leaky_relu(x, LRELU_SLOPE)
|
|
x = self.ups[i](x)
|
|
xs = None
|
|
for j in range(self.num_kernels):
|
|
if xs is None:
|
|
xs = self.resblocks[i*self.num_kernels+j](x)
|
|
else:
|
|
xs += self.resblocks[i*self.num_kernels+j](x)
|
|
x = xs / self.num_kernels
|
|
x = F.leaky_relu(x)
|
|
x = self.conv_post(x)
|
|
x = torch.tanh(x)
|
|
|
|
return x
|
|
|
|
def remove_weight_norm(self):
|
|
print('Removing weight norm...')
|
|
for l in self.ups:
|
|
remove_weight_norm(l)
|
|
for l in self.resblocks:
|
|
l.remove_weight_norm()
|
|
|
|
|
|
class DiscriminatorP(torch.nn.Module):
|
|
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
|
super(DiscriminatorP, self).__init__()
|
|
self.period = period
|
|
self.use_spectral_norm = use_spectral_norm
|
|
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
|
self.convs = nn.ModuleList([
|
|
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
|
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
|
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
|
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
|
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
|
|
])
|
|
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
|
|
|
def forward(self, x):
|
|
fmap = []
|
|
|
|
|
|
b, c, t = x.shape
|
|
if t % self.period != 0:
|
|
n_pad = self.period - (t % self.period)
|
|
x = F.pad(x, (0, n_pad), "reflect")
|
|
t = t + n_pad
|
|
x = x.view(b, c, t // self.period, self.period)
|
|
|
|
for l in self.convs:
|
|
x = l(x)
|
|
x = F.leaky_relu(x, LRELU_SLOPE)
|
|
fmap.append(x)
|
|
x = self.conv_post(x)
|
|
fmap.append(x)
|
|
x = torch.flatten(x, 1, -1)
|
|
|
|
return x, fmap
|
|
|
|
|
|
class DiscriminatorS(torch.nn.Module):
|
|
def __init__(self, use_spectral_norm=False):
|
|
super(DiscriminatorS, self).__init__()
|
|
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
|
self.convs = nn.ModuleList([
|
|
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
|
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
|
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
|
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
|
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
|
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
|
])
|
|
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
|
|
|
def forward(self, x):
|
|
fmap = []
|
|
|
|
for l in self.convs:
|
|
x = l(x)
|
|
x = F.leaky_relu(x, LRELU_SLOPE)
|
|
fmap.append(x)
|
|
x = self.conv_post(x)
|
|
fmap.append(x)
|
|
x = torch.flatten(x, 1, -1)
|
|
|
|
return x, fmap
|
|
|
|
|
|
class MultiPeriodDiscriminator(torch.nn.Module):
|
|
def __init__(self, use_spectral_norm=False):
|
|
super(MultiPeriodDiscriminator, self).__init__()
|
|
periods = [2,3,5,7,11]
|
|
|
|
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
|
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
|
|
self.discriminators = nn.ModuleList(discs)
|
|
|
|
def forward(self, y, y_hat):
|
|
y_d_rs = []
|
|
y_d_gs = []
|
|
fmap_rs = []
|
|
fmap_gs = []
|
|
for i, d in enumerate(self.discriminators):
|
|
y_d_r, fmap_r = d(y)
|
|
y_d_g, fmap_g = d(y_hat)
|
|
y_d_rs.append(y_d_r)
|
|
y_d_gs.append(y_d_g)
|
|
fmap_rs.append(fmap_r)
|
|
fmap_gs.append(fmap_g)
|
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
|
|
|
|
|
class SpeakerEncoder(torch.nn.Module):
|
|
def __init__(self, mel_n_channels=80, model_num_layers=3, model_hidden_size=256, model_embedding_size=256):
|
|
super(SpeakerEncoder, self).__init__()
|
|
self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True)
|
|
self.linear = nn.Linear(model_hidden_size, model_embedding_size)
|
|
self.relu = nn.ReLU()
|
|
|
|
def forward(self, mels):
|
|
self.lstm.flatten_parameters()
|
|
_, (hidden, _) = self.lstm(mels)
|
|
embeds_raw = self.relu(self.linear(hidden[-1]))
|
|
return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
|
|
|
|
def compute_partial_slices(self, total_frames, partial_frames, partial_hop):
|
|
mel_slices = []
|
|
for i in range(0, total_frames-partial_frames, partial_hop):
|
|
mel_range = torch.arange(i, i+partial_frames)
|
|
mel_slices.append(mel_range)
|
|
|
|
return mel_slices
|
|
|
|
def embed_utterance(self, mel, partial_frames=128, partial_hop=64):
|
|
mel_len = mel.size(1)
|
|
last_mel = mel[:,-partial_frames:]
|
|
|
|
if mel_len > partial_frames:
|
|
mel_slices = self.compute_partial_slices(mel_len, partial_frames, partial_hop)
|
|
mels = list(mel[:,s] for s in mel_slices)
|
|
mels.append(last_mel)
|
|
mels = torch.stack(tuple(mels), 0).squeeze(1)
|
|
|
|
with torch.no_grad():
|
|
partial_embeds = self(mels)
|
|
embed = torch.mean(partial_embeds, axis=0).unsqueeze(0)
|
|
|
|
else:
|
|
with torch.no_grad():
|
|
embed = self(last_mel)
|
|
|
|
return embed
|
|
|
|
|
|
class SynthesizerTrn(nn.Module):
|
|
"""
|
|
Synthesizer for Training
|
|
"""
|
|
|
|
def __init__(self,
|
|
spec_channels,
|
|
segment_size,
|
|
inter_channels,
|
|
hidden_channels,
|
|
filter_channels,
|
|
n_heads,
|
|
n_layers,
|
|
kernel_size,
|
|
p_dropout,
|
|
resblock,
|
|
resblock_kernel_sizes,
|
|
resblock_dilation_sizes,
|
|
upsample_rates,
|
|
upsample_initial_channel,
|
|
upsample_kernel_sizes,
|
|
gin_channels,
|
|
ssl_dim,
|
|
use_spk,
|
|
**kwargs):
|
|
|
|
super().__init__()
|
|
self.spec_channels = spec_channels
|
|
self.inter_channels = inter_channels
|
|
self.hidden_channels = hidden_channels
|
|
self.filter_channels = filter_channels
|
|
self.n_heads = n_heads
|
|
self.n_layers = n_layers
|
|
self.kernel_size = kernel_size
|
|
self.p_dropout = p_dropout
|
|
self.resblock = resblock
|
|
self.resblock_kernel_sizes = resblock_kernel_sizes
|
|
self.resblock_dilation_sizes = resblock_dilation_sizes
|
|
self.upsample_rates = upsample_rates
|
|
self.upsample_initial_channel = upsample_initial_channel
|
|
self.upsample_kernel_sizes = upsample_kernel_sizes
|
|
self.segment_size = segment_size
|
|
self.gin_channels = gin_channels
|
|
self.ssl_dim = ssl_dim
|
|
self.use_spk = use_spk
|
|
|
|
self.enc_p = Encoder(ssl_dim, inter_channels, hidden_channels, 5, 1, 16)
|
|
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
|
|
self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
|
|
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
|
|
|
if not self.use_spk:
|
|
self.enc_spk = SpeakerEncoder(model_hidden_size=gin_channels, model_embedding_size=gin_channels)
|
|
|
|
def forward(self, c, spec, g=None, mel=None, c_lengths=None, spec_lengths=None):
|
|
if c_lengths == None:
|
|
c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
|
|
if spec_lengths == None:
|
|
spec_lengths = (torch.ones(spec.size(0)) * spec.size(-1)).to(spec.device)
|
|
|
|
if not self.use_spk:
|
|
g = self.enc_spk(mel.transpose(1,2))
|
|
g = g.unsqueeze(-1)
|
|
|
|
_, m_p, logs_p, _ = self.enc_p(c, c_lengths)
|
|
z, m_q, logs_q, spec_mask = self.enc_q(spec, spec_lengths, g=g)
|
|
z_p = self.flow(z, spec_mask, g=g)
|
|
|
|
z_slice, ids_slice = rand_slice_segments(z, spec_lengths, self.segment_size)
|
|
o = self.dec(z_slice, g=g)
|
|
|
|
return o, ids_slice, spec_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
|
|
|
def infer(self, c, g=None, mel=None, c_lengths=None):
|
|
if c_lengths == None:
|
|
c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
|
|
if not self.use_spk:
|
|
g = self.enc_spk.embed_utterance(mel.transpose(1,2))
|
|
g = g.unsqueeze(-1)
|
|
|
|
z_p, m_p, logs_p, c_mask = self.enc_p(c, c_lengths)
|
|
z = self.flow(z_p, c_mask, g=g, reverse=True)
|
|
o = self.dec(z * c_mask, g=g)
|
|
|
|
return o
|
|
|