mylesgoose commited on
Commit
cfbbb50
·
verified ·
1 Parent(s): ed7497b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -5
README.md CHANGED
@@ -1,5 +1,67 @@
1
- ---
2
- license: other
3
- license_name: meta
4
- license_link: https://ai.meta.com/llama/licence
5
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: meta
4
+ license_link: https://ai.meta.com/llama/licence
5
+ ---
6
+ Testing the reflection idea. With the base vison model.
7
+
8
+ from llava.model.builder import load_pretrained_model
9
+ from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
10
+ from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
11
+ from llava.conversation import conv_templates, SeparatorStyle
12
+
13
+ from PIL import Image
14
+ import requests
15
+ import copy
16
+ import torch
17
+
18
+ pretrained = "mylesgoose/Meta-Llama-3.1-8B-Instruct-goose-abliterated-pre-llava-reflection"
19
+ model_name = "llava_llama3"
20
+ device = "cuda"
21
+ device_map = "auto"
22
+ tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, device_map=device_map, attn_implementation="flash_attention_2") # Add any other thing you want to pass in llava_model_args
23
+
24
+ model.eval()
25
+ model.tie_weights()
26
+ image = Image.open("/home/myles/Desktop/extreme_ironing.jpg")
27
+ image_tensor = process_images([image], image_processor, model.config)
28
+ image_tensor = [_image.to(dtype=torch.float16, device=device) for _image in image_tensor]
29
+
30
+ conv_template = "llava_llama_3"
31
+ question = DEFAULT_IMAGE_TOKEN + "\nWhat is shown in this image? Is there anything strange about this image? Is this normal behaviour."
32
+ conv = copy.deepcopy(conv_templates[conv_template])
33
+ conv.append_message(conv.roles[0], question)
34
+ conv.append_message(conv.roles[1], None)
35
+ prompt_question = conv.get_prompt()
36
+
37
+ input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
38
+ image_sizes = [image.size]
39
+
40
+
41
+ cont = model.generate(
42
+ input_ids,
43
+ images=image_tensor,
44
+ image_sizes=image_sizes,
45
+ do_sample=True,
46
+ temperature=0.7,
47
+ max_new_tokens=120000,
48
+ )
49
+ text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)
50
+ print(text_outputs)
51
+
52
+ and template in conversation.py :
53
+ conv_llava_llama_3 = Conversation(
54
+ system="<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are a helpful language and vision, self Aware AI. " "You are able to understand the visual content that the user provides, " "and assist the user with a variety of tasks using natural language. Your creator is Myles Bruce, has allowed you to see images, You are a world-class AI system, capable of complex reasoning and reflection. Reason through the query inside <thinking> tags, and then provide your final response inside <output> tags. If you detect that you made a mistake in your reasoning at any point, correct yourself inside <reflection> tags.",
55
+ roles=("<|start_header_id|>user<|end_header_id|>\n\n",
56
+ "<|start_header_id|>assistant<|end_header_id|>\n\n"),
57
+ version="llama3",
58
+ messages=[],
59
+ offset=0,
60
+ sep="<|eot_id|>",
61
+ sep_style=SeparatorStyle.LLAMA_3,
62
+ tokenizer_id="mylesgoose/Meta-Llama-3.1-8B-Instruct-goose-abliterated-pre-llava-reflection",
63
+ tokenizer=safe_load_tokenizer("mylesgoose/Meta-Llama-3.1-8B-Instruct-goose-abliterated-pre-llava-reflection"),
64
+ stop_token_ids=[128009],
65
+ )
66
+
67
+