myklicious
commited on
Commit
•
573929f
1
Parent(s):
63df110
deep-rl-course unit 1 LunarLander-v2 trained model
Browse files- README.md +37 -0
- config.json +1 -0
- lunar_lander_agent_01.zip +3 -0
- lunar_lander_agent_01/_stable_baselines3_version +1 -0
- lunar_lander_agent_01/data +94 -0
- lunar_lander_agent_01/policy.optimizer.pth +3 -0
- lunar_lander_agent_01/policy.pth +3 -0
- lunar_lander_agent_01/pytorch_variables.pth +3 -0
- lunar_lander_agent_01/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 259.95 +/- 13.40
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9ea41b8f70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9ea41bd040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9ea41bd0d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9ea41bd160>", "_build": "<function ActorCriticPolicy._build at 0x7f9ea41bd1f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9ea41bd280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9ea41bd310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9ea41bd3a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9ea41bd430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9ea41bd4c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9ea41bd550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9ea41bb120>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670954585048476695, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIC1z73DLV+6GR/JuGniyrOZkPA6Cj3sNwAAgD8AAIA/RgNcvhsn97xpRbe8R5hGu5OCWT4UkhY8AACAPwAAgD9N5I894drsOedQsbvdSiA2Zn6kOz1YmrUAAIA/AAAAABoUDr1SkqW7jqEuvdY3Yjxm4O08pYVCvQAAgD8AAIA/TVIcPuyK8rsDMdQ7vRUAuhtpV704XNe6AACAPwAAgD/Af9U9oD+AP0oNuT295A2/U+rKPbZUf7wAAAAAAAAAAGZIjL2UWHk+5dOmPEqgUL5vbgS8KIf/uwAAAAAAAAAAmnZbPRQAnrqW4UM6/jwbNRnMl7kmXmG5AACAPwAAAACN5qW+lTY9P34tn7s0qJ2+GhItvjQqmj0AAAAAAAAAAJ1Ki76qcE0/zWMevd71iL7Gy06+Y9kXPgAAAAAAAAAAwDyEPVxHZLrAh+o6QlshNuuMNzs7Kwi6AACAPwAAAACzjxo9KXQAurbw9LiJABUyiZoMu11HEDgAAIA/AACAP2bwVTxL8F4/SpyZPakb7r66TfM8SKoePQAAAAAAAAAAM7HWPEhTgrq5vMO2C6m2sQkbkjpmkec1AACAPwAAgD82HY8+J406P542+D09Gtu+DD1kPkUK07wAAAAAAAAAAO6wg76KBWw/NvRevoculb7KCla+qTSuPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4L4OnDMVakCUhpRSlIwBbJRN7QGMAXSUR0CTuA15B1LbdX2UKGgGaAloD0MIfSWQEjvib0CUhpRSlGgVTWoBaBZHQJO4f5wfhdd1fZQoaAZoCWgPQwivWpnwy8BxQJSGlFKUaBVN6gFoFkdAk81LgXMyJ3V9lChoBmgJaA9DCIzc09UdP25AlIaUUpRoFU1BAWgWR0CTzX7hNucddX2UKGgGaAloD0MIMSjTaPInbUCUhpRSlGgVTVMBaBZHQJPNpYigTRJ1fZQoaAZoCWgPQwjBxB9FHd1vQJSGlFKUaBVNBgJoFkdAk83d3np0OnV9lChoBmgJaA9DCP5itmQV6nBAlIaUUpRoFU1TAWgWR0CTzugk1MufdX2UKGgGaAloD0MIouwt5fyrcUCUhpRSlGgVTSEBaBZHQJPPC2phnap1fZQoaAZoCWgPQwhqh78mayFzQJSGlFKUaBVNKQFoFkdAk9AIJiRW93V9lChoBmgJaA9DCJtwr8zb93BAlIaUUpRoFU1CAWgWR0CT0D3evZAZdX2UKGgGaAloD0MIuaZAZmcacECUhpRSlGgVTUIBaBZHQJPREFjd56d1fZQoaAZoCWgPQwgE4nX9AjlvQJSGlFKUaBVNGQFoFkdAk9OEU47zTXV9lChoBmgJaA9DCCo5J/YQsnFAlIaUUpRoFU0eAWgWR0CT1C2mpEQYdX2UKGgGaAloD0MIATPfwU9ucECUhpRSlGgVS/1oFkdAk9UIIKMNt3V9lChoBmgJaA9DCM064/tiDnBAlIaUUpRoFU1aAWgWR0CT1USgoPTYdX2UKGgGaAloD0MIHEXWGgoHcECUhpRSlGgVS/xoFkdAk9VnD7655XV9lChoBmgJaA9DCMTNqWQAe3BAlIaUUpRoFU2FAWgWR0CT1ZmyxA0LdX2UKGgGaAloD0MIwCUA/xTgb0CUhpRSlGgVTREBaBZHQJPV5mWdEst1fZQoaAZoCWgPQwg91/fh4MtwQJSGlFKUaBVNZgFoFkdAk9YuY+jdpXV9lChoBmgJaA9DCJCkpIfhcnFAlIaUUpRoFU1ZAWgWR0CT2GRGtp22dX2UKGgGaAloD0MIat/cXz1pcUCUhpRSlGgVTToBaBZHQJPYpFb3XZp1fZQoaAZoCWgPQwgPDvYmxslwQJSGlFKUaBVNWAFoFkdAk9m2ykbgj3V9lChoBmgJaA9DCJFCWfh64HFAlIaUUpRoFU1BAWgWR0CT2i9KEnLJdX2UKGgGaAloD0MIZtgo6zcebECUhpRSlGgVTU0BaBZHQJPb4K9f1Hx1fZQoaAZoCWgPQwhubeF5aV5xQJSGlFKUaBVNiwFoFkdAk90vB7/n4nV9lChoBmgJaA9DCDHsMCb9EnBAlIaUUpRoFU0uAWgWR0CT3Ywnpjc3dX2UKGgGaAloD0MIstr8v+oXc0CUhpRSlGgVTSIBaBZHQJPdw/LTx5N1fZQoaAZoCWgPQwjwMsNGWQlxQJSGlFKUaBVNBgFoFkdAk93vJmuklHV9lChoBmgJaA9DCIxppnsdVHFAlIaUUpRoFU0TAWgWR0CT3gX6InBtdX2UKGgGaAloD0MIycuaWCAbcUCUhpRSlGgVTR0BaBZHQJPehjUd7v51fZQoaAZoCWgPQwjKNJpcTBlxQJSGlFKUaBVNCAFoFkdAk97HOGCZnnV9lChoBmgJaA9DCGVtUzzuWHBAlIaUUpRoFU0lAWgWR0CT3wI2fkFOdX2UKGgGaAloD0MI9fOmItW0cUCUhpRSlGgVTTwBaBZHQJPf12KVII51fZQoaAZoCWgPQwiM2CeAIm5yQJSGlFKUaBVL6mgWR0CT4CSvC/GmdX2UKGgGaAloD0MIIlM+BFVSW0CUhpRSlGgVTegDaBZHQJPhQ6mwaBJ1fZQoaAZoCWgPQwjZsnxdxulwQJSGlFKUaBVL82gWR0CT4ci3ocJddX2UKGgGaAloD0MIAJF++zr5bUCUhpRSlGgVTQcBaBZHQJPh7LSuyNZ1fZQoaAZoCWgPQwhPeXQj7ChxQJSGlFKUaBVNVQFoFkdAk+LngDRtxnV9lChoBmgJaA9DCLAEUmIXBnJAlIaUUpRoFU0NAWgWR0CT4/DM/yG0dX2UKGgGaAloD0MIVpqUgm6ccUCUhpRSlGgVS+xoFkdAk+ShA4XGfnV9lChoBmgJaA9DCOAT61Q5K3JAlIaUUpRoFU0kAWgWR0CT5j36yjYadX2UKGgGaAloD0MIPGnhskrjckCUhpRSlGgVTTQBaBZHQJPmdF1B+nZ1fZQoaAZoCWgPQwghzO1eLltwQJSGlFKUaBVNFQFoFkdAk+cf2GqPwXV9lChoBmgJaA9DCLDjv0CQY25AlIaUUpRoFU0fAWgWR0CT5yiDujREdX2UKGgGaAloD0MInKIjufxjTUCUhpRSlGgVS6xoFkdAk+eBC6YmcHV9lChoBmgJaA9DCCv52F2gcG9AlIaUUpRoFU1cAWgWR0CT6JYSg5BDdX2UKGgGaAloD0MIbcfUXVlxb0CUhpRSlGgVTRMBaBZHQJPow1l5GBp1fZQoaAZoCWgPQwi77q1ITHJAQJSGlFKUaBVLsGgWR0CT6MO0svqUdX2UKGgGaAloD0MIz/V9OEi9Y0CUhpRSlGgVTegDaBZHQJPphdszl911fZQoaAZoCWgPQwhMbamDvNtyQJSGlFKUaBVNWwFoFkdAk+mc6/7BPHV9lChoBmgJaA9DCH+D9uqjEXBAlIaUUpRoFU0jAWgWR0CT6mg2Ifr9dX2UKGgGaAloD0MIsi0DzlJfbUCUhpRSlGgVTV8BaBZHQJPqrtnf2sd1fZQoaAZoCWgPQwgCLV3BtoBvQJSGlFKUaBVN3gFoFkdAk+wWjwhGIHV9lChoBmgJaA9DCIqtoGnJ5XBAlIaUUpRoFU1gAWgWR0CT/3NXo1UEdX2UKGgGaAloD0MI/YSzW0uYbkCUhpRSlGgVTQIBaBZHQJP/gXSBshx1fZQoaAZoCWgPQwgHtd/ayaBxQJSGlFKUaBVNGAFoFkdAk/+BMi8nNXV9lChoBmgJaA9DCBnG3SCaVHBAlIaUUpRoFU0ZAWgWR0CUAVTvy9VWdX2UKGgGaAloD0MI2Ne61MhQckCUhpRSlGgVTQUBaBZHQJQBfRMN+b51fZQoaAZoCWgPQwiM9KJ2P0pyQJSGlFKUaBVNAQFoFkdAlAGt87ZFonV9lChoBmgJaA9DCPYINUNqK3NAlIaUUpRoFU0fAWgWR0CUAisXBP9DdX2UKGgGaAloD0MIOEiI8gUzRkCUhpRSlGgVS7JoFkdAlAJYPXkHU3V9lChoBmgJaA9DCP0QGyzcAHNAlIaUUpRoFU09AWgWR0CUAndc0LtvdX2UKGgGaAloD0MIZW1TPK77cECUhpRSlGgVTQABaBZHQJQCpgc94eN1fZQoaAZoCWgPQwitTzkmC9dxQJSGlFKUaBVNCwFoFkdAlALF+y7f53V9lChoBmgJaA9DCC6rsBkgVnBAlIaUUpRoFU0aAWgWR0CUAz1lGwzMdX2UKGgGaAloD0MIrmNccXHbcUCUhpRSlGgVTRYBaBZHQJQDsIw/PgN1fZQoaAZoCWgPQwj+8V61MoJuQJSGlFKUaBVNFwFoFkdAlAPFaB7NS3V9lChoBmgJaA9DCJ5hakvdDXBAlIaUUpRoFUvxaBZHQJQFfPhQ3xZ1fZQoaAZoCWgPQwhcqz3shXxtQJSGlFKUaBVL/2gWR0CUBdxGUfPpdX2UKGgGaAloD0MI93e2R2/aR0CUhpRSlGgVS6FoFkdAlAawUpNKy3V9lChoBmgJaA9DCPBQFOjTGXFAlIaUUpRoFU08AWgWR0CUB5v/io87dX2UKGgGaAloD0MINq5/16cxcUCUhpRSlGgVS/5oFkdAlAgH3g1m8XV9lChoBmgJaA9DCECGjh2USHBAlIaUUpRoFU0NAWgWR0CUCFo2GZeBdX2UKGgGaAloD0MIRpc3h+tvb0CUhpRSlGgVTX0BaBZHQJQJDU1AJLN1fZQoaAZoCWgPQwgN38K6cYRyQJSGlFKUaBVNHgFoFkdAlAk8zdk8R3V9lChoBmgJaA9DCB+DFacaBHJAlIaUUpRoFU0uAWgWR0CUCpvK2a2GdX2UKGgGaAloD0MIEXAIVersckCUhpRSlGgVTVUBaBZHQJQLgGFBY3h1fZQoaAZoCWgPQwg82GK3T/5vQJSGlFKUaBVNFwFoFkdAlAvMlw97nnV9lChoBmgJaA9DCBfTTPe6GnNAlIaUUpRoFU1KAWgWR0CUC8zru6VddX2UKGgGaAloD0MICHQmbarmcUCUhpRSlGgVTT8BaBZHQJQM02ZRbbF1fZQoaAZoCWgPQwiHGoUkc3FyQJSGlFKUaBVNWgFoFkdAlAz/CuU2UHV9lChoBmgJaA9DCNSCF30Fx3JAlIaUUpRoFU0FAWgWR0CUDa9MsYl6dX2UKGgGaAloD0MIKowtBLnEcECUhpRSlGgVTRQBaBZHQJQQrP2PDHh1fZQoaAZoCWgPQwikiAyrOGRwQJSGlFKUaBVNIgFoFkdAlBC3eSB9TnV9lChoBmgJaA9DCB6oUx7dRXJAlIaUUpRoFU1PAWgWR0CUEUXAM2FWdX2UKGgGaAloD0MIls/yPDgNcECUhpRSlGgVTSoBaBZHQJQSnrD63y91fZQoaAZoCWgPQwjt0obDUg1vQJSGlFKUaBVNRQFoFkdAlBLDBMzuW3V9lChoBmgJaA9DCE8/qIsUJm5AlIaUUpRoFU0UAWgWR0CUE7EgW8AadX2UKGgGaAloD0MI0PBmDV74b0CUhpRSlGgVTRMBaBZHQJQUogQpWmx1fZQoaAZoCWgPQwgr3sg8ci5xQJSGlFKUaBVNEwFoFkdAlBTysXBP9HV9lChoBmgJaA9DCMOedvgr4XBAlIaUUpRoFU0yAWgWR0CUFgmNipeedX2UKGgGaAloD0MIFM0DWKSPcECUhpRSlGgVTTIBaBZHQJQXTTH80k51fZQoaAZoCWgPQwiAft+/+bNtQJSGlFKUaBVNMgFoFkdAlBeKMJhOQHV9lChoBmgJaA9DCAd+VMN+Hm9AlIaUUpRoFUv/aBZHQJQZtagVXV91fZQoaAZoCWgPQwj6K2SuDJ9oQJSGlFKUaBVN6ANoFkdAlBv5PM0P6XV9lChoBmgJaA9DCKvQQCwbFW9AlIaUUpRoFU0NAWgWR0CUHFHFxXGPdX2UKGgGaAloD0MIhugQOFK5cUCUhpRSlGgVTRcBaBZHQJQc1dMTN+t1fZQoaAZoCWgPQwjSAN4CyYtyQJSGlFKUaBVNSQNoFkdAlB0GXXyy2XV9lChoBmgJaA9DCP0RhgHL9HJAlIaUUpRoFU1IAWgWR0CUHRVN5+pgdX2UKGgGaAloD0MIzefc7fpIb0CUhpRSlGgVTQoBaBZHQJQdSbONYKZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
lunar_lander_agent_01.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e09ff010d411c0f1e2513178818038e5da0f3f69ffd09028786c44ad4ee3b8d8
|
3 |
+
size 147332
|
lunar_lander_agent_01/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
lunar_lander_agent_01/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9ea41b8f70>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9ea41bd040>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9ea41bd0d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9ea41bd160>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9ea41bd1f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9ea41bd280>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9ea41bd310>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9ea41bd3a0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9ea41bd430>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9ea41bd4c0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9ea41bd550>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f9ea41bb120>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000.0,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1670954585048476695,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIC1z73DLV+6GR/JuGniyrOZkPA6Cj3sNwAAgD8AAIA/RgNcvhsn97xpRbe8R5hGu5OCWT4UkhY8AACAPwAAgD9N5I894drsOedQsbvdSiA2Zn6kOz1YmrUAAIA/AAAAABoUDr1SkqW7jqEuvdY3Yjxm4O08pYVCvQAAgD8AAIA/TVIcPuyK8rsDMdQ7vRUAuhtpV704XNe6AACAPwAAgD/Af9U9oD+AP0oNuT295A2/U+rKPbZUf7wAAAAAAAAAAGZIjL2UWHk+5dOmPEqgUL5vbgS8KIf/uwAAAAAAAAAAmnZbPRQAnrqW4UM6/jwbNRnMl7kmXmG5AACAPwAAAACN5qW+lTY9P34tn7s0qJ2+GhItvjQqmj0AAAAAAAAAAJ1Ki76qcE0/zWMevd71iL7Gy06+Y9kXPgAAAAAAAAAAwDyEPVxHZLrAh+o6QlshNuuMNzs7Kwi6AACAPwAAAACzjxo9KXQAurbw9LiJABUyiZoMu11HEDgAAIA/AACAP2bwVTxL8F4/SpyZPakb7r66TfM8SKoePQAAAAAAAAAAM7HWPEhTgrq5vMO2C6m2sQkbkjpmkec1AACAPwAAgD82HY8+J406P542+D09Gtu+DD1kPkUK07wAAAAAAAAAAO6wg76KBWw/NvRevoculb7KCla+qTSuPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4L4OnDMVakCUhpRSlIwBbJRN7QGMAXSUR0CTuA15B1LbdX2UKGgGaAloD0MIfSWQEjvib0CUhpRSlGgVTWoBaBZHQJO4f5wfhdd1fZQoaAZoCWgPQwivWpnwy8BxQJSGlFKUaBVN6gFoFkdAk81LgXMyJ3V9lChoBmgJaA9DCIzc09UdP25AlIaUUpRoFU1BAWgWR0CTzX7hNucddX2UKGgGaAloD0MIMSjTaPInbUCUhpRSlGgVTVMBaBZHQJPNpYigTRJ1fZQoaAZoCWgPQwjBxB9FHd1vQJSGlFKUaBVNBgJoFkdAk83d3np0OnV9lChoBmgJaA9DCP5itmQV6nBAlIaUUpRoFU1TAWgWR0CTzugk1MufdX2UKGgGaAloD0MIouwt5fyrcUCUhpRSlGgVTSEBaBZHQJPPC2phnap1fZQoaAZoCWgPQwhqh78mayFzQJSGlFKUaBVNKQFoFkdAk9AIJiRW93V9lChoBmgJaA9DCJtwr8zb93BAlIaUUpRoFU1CAWgWR0CT0D3evZAZdX2UKGgGaAloD0MIuaZAZmcacECUhpRSlGgVTUIBaBZHQJPREFjd56d1fZQoaAZoCWgPQwgE4nX9AjlvQJSGlFKUaBVNGQFoFkdAk9OEU47zTXV9lChoBmgJaA9DCCo5J/YQsnFAlIaUUpRoFU0eAWgWR0CT1C2mpEQYdX2UKGgGaAloD0MIATPfwU9ucECUhpRSlGgVS/1oFkdAk9UIIKMNt3V9lChoBmgJaA9DCM064/tiDnBAlIaUUpRoFU1aAWgWR0CT1USgoPTYdX2UKGgGaAloD0MIHEXWGgoHcECUhpRSlGgVS/xoFkdAk9VnD7655XV9lChoBmgJaA9DCMTNqWQAe3BAlIaUUpRoFU2FAWgWR0CT1ZmyxA0LdX2UKGgGaAloD0MIwCUA/xTgb0CUhpRSlGgVTREBaBZHQJPV5mWdEst1fZQoaAZoCWgPQwg91/fh4MtwQJSGlFKUaBVNZgFoFkdAk9YuY+jdpXV9lChoBmgJaA9DCJCkpIfhcnFAlIaUUpRoFU1ZAWgWR0CT2GRGtp22dX2UKGgGaAloD0MIat/cXz1pcUCUhpRSlGgVTToBaBZHQJPYpFb3XZp1fZQoaAZoCWgPQwgPDvYmxslwQJSGlFKUaBVNWAFoFkdAk9m2ykbgj3V9lChoBmgJaA9DCJFCWfh64HFAlIaUUpRoFU1BAWgWR0CT2i9KEnLJdX2UKGgGaAloD0MIZtgo6zcebECUhpRSlGgVTU0BaBZHQJPb4K9f1Hx1fZQoaAZoCWgPQwhubeF5aV5xQJSGlFKUaBVNiwFoFkdAk90vB7/n4nV9lChoBmgJaA9DCDHsMCb9EnBAlIaUUpRoFU0uAWgWR0CT3Ywnpjc3dX2UKGgGaAloD0MIstr8v+oXc0CUhpRSlGgVTSIBaBZHQJPdw/LTx5N1fZQoaAZoCWgPQwjwMsNGWQlxQJSGlFKUaBVNBgFoFkdAk93vJmuklHV9lChoBmgJaA9DCIxppnsdVHFAlIaUUpRoFU0TAWgWR0CT3gX6InBtdX2UKGgGaAloD0MIycuaWCAbcUCUhpRSlGgVTR0BaBZHQJPehjUd7v51fZQoaAZoCWgPQwjKNJpcTBlxQJSGlFKUaBVNCAFoFkdAk97HOGCZnnV9lChoBmgJaA9DCGVtUzzuWHBAlIaUUpRoFU0lAWgWR0CT3wI2fkFOdX2UKGgGaAloD0MI9fOmItW0cUCUhpRSlGgVTTwBaBZHQJPf12KVII51fZQoaAZoCWgPQwiM2CeAIm5yQJSGlFKUaBVL6mgWR0CT4CSvC/GmdX2UKGgGaAloD0MIIlM+BFVSW0CUhpRSlGgVTegDaBZHQJPhQ6mwaBJ1fZQoaAZoCWgPQwjZsnxdxulwQJSGlFKUaBVL82gWR0CT4ci3ocJddX2UKGgGaAloD0MIAJF++zr5bUCUhpRSlGgVTQcBaBZHQJPh7LSuyNZ1fZQoaAZoCWgPQwhPeXQj7ChxQJSGlFKUaBVNVQFoFkdAk+LngDRtxnV9lChoBmgJaA9DCLAEUmIXBnJAlIaUUpRoFU0NAWgWR0CT4/DM/yG0dX2UKGgGaAloD0MIVpqUgm6ccUCUhpRSlGgVS+xoFkdAk+ShA4XGfnV9lChoBmgJaA9DCOAT61Q5K3JAlIaUUpRoFU0kAWgWR0CT5j36yjYadX2UKGgGaAloD0MIPGnhskrjckCUhpRSlGgVTTQBaBZHQJPmdF1B+nZ1fZQoaAZoCWgPQwghzO1eLltwQJSGlFKUaBVNFQFoFkdAk+cf2GqPwXV9lChoBmgJaA9DCLDjv0CQY25AlIaUUpRoFU0fAWgWR0CT5yiDujREdX2UKGgGaAloD0MInKIjufxjTUCUhpRSlGgVS6xoFkdAk+eBC6YmcHV9lChoBmgJaA9DCCv52F2gcG9AlIaUUpRoFU1cAWgWR0CT6JYSg5BDdX2UKGgGaAloD0MIbcfUXVlxb0CUhpRSlGgVTRMBaBZHQJPow1l5GBp1fZQoaAZoCWgPQwi77q1ITHJAQJSGlFKUaBVLsGgWR0CT6MO0svqUdX2UKGgGaAloD0MIz/V9OEi9Y0CUhpRSlGgVTegDaBZHQJPphdszl911fZQoaAZoCWgPQwhMbamDvNtyQJSGlFKUaBVNWwFoFkdAk+mc6/7BPHV9lChoBmgJaA9DCH+D9uqjEXBAlIaUUpRoFU0jAWgWR0CT6mg2Ifr9dX2UKGgGaAloD0MIsi0DzlJfbUCUhpRSlGgVTV8BaBZHQJPqrtnf2sd1fZQoaAZoCWgPQwgCLV3BtoBvQJSGlFKUaBVN3gFoFkdAk+wWjwhGIHV9lChoBmgJaA9DCIqtoGnJ5XBAlIaUUpRoFU1gAWgWR0CT/3NXo1UEdX2UKGgGaAloD0MI/YSzW0uYbkCUhpRSlGgVTQIBaBZHQJP/gXSBshx1fZQoaAZoCWgPQwgHtd/ayaBxQJSGlFKUaBVNGAFoFkdAk/+BMi8nNXV9lChoBmgJaA9DCBnG3SCaVHBAlIaUUpRoFU0ZAWgWR0CUAVTvy9VWdX2UKGgGaAloD0MI2Ne61MhQckCUhpRSlGgVTQUBaBZHQJQBfRMN+b51fZQoaAZoCWgPQwiM9KJ2P0pyQJSGlFKUaBVNAQFoFkdAlAGt87ZFonV9lChoBmgJaA9DCPYINUNqK3NAlIaUUpRoFU0fAWgWR0CUAisXBP9DdX2UKGgGaAloD0MIOEiI8gUzRkCUhpRSlGgVS7JoFkdAlAJYPXkHU3V9lChoBmgJaA9DCP0QGyzcAHNAlIaUUpRoFU09AWgWR0CUAndc0LtvdX2UKGgGaAloD0MIZW1TPK77cECUhpRSlGgVTQABaBZHQJQCpgc94eN1fZQoaAZoCWgPQwitTzkmC9dxQJSGlFKUaBVNCwFoFkdAlALF+y7f53V9lChoBmgJaA9DCC6rsBkgVnBAlIaUUpRoFU0aAWgWR0CUAz1lGwzMdX2UKGgGaAloD0MIrmNccXHbcUCUhpRSlGgVTRYBaBZHQJQDsIw/PgN1fZQoaAZoCWgPQwj+8V61MoJuQJSGlFKUaBVNFwFoFkdAlAPFaB7NS3V9lChoBmgJaA9DCJ5hakvdDXBAlIaUUpRoFUvxaBZHQJQFfPhQ3xZ1fZQoaAZoCWgPQwhcqz3shXxtQJSGlFKUaBVL/2gWR0CUBdxGUfPpdX2UKGgGaAloD0MI93e2R2/aR0CUhpRSlGgVS6FoFkdAlAawUpNKy3V9lChoBmgJaA9DCPBQFOjTGXFAlIaUUpRoFU08AWgWR0CUB5v/io87dX2UKGgGaAloD0MINq5/16cxcUCUhpRSlGgVS/5oFkdAlAgH3g1m8XV9lChoBmgJaA9DCECGjh2USHBAlIaUUpRoFU0NAWgWR0CUCFo2GZeBdX2UKGgGaAloD0MIRpc3h+tvb0CUhpRSlGgVTX0BaBZHQJQJDU1AJLN1fZQoaAZoCWgPQwgN38K6cYRyQJSGlFKUaBVNHgFoFkdAlAk8zdk8R3V9lChoBmgJaA9DCB+DFacaBHJAlIaUUpRoFU0uAWgWR0CUCpvK2a2GdX2UKGgGaAloD0MIEXAIVersckCUhpRSlGgVTVUBaBZHQJQLgGFBY3h1fZQoaAZoCWgPQwg82GK3T/5vQJSGlFKUaBVNFwFoFkdAlAvMlw97nnV9lChoBmgJaA9DCBfTTPe6GnNAlIaUUpRoFU1KAWgWR0CUC8zru6VddX2UKGgGaAloD0MICHQmbarmcUCUhpRSlGgVTT8BaBZHQJQM02ZRbbF1fZQoaAZoCWgPQwiHGoUkc3FyQJSGlFKUaBVNWgFoFkdAlAz/CuU2UHV9lChoBmgJaA9DCNSCF30Fx3JAlIaUUpRoFU0FAWgWR0CUDa9MsYl6dX2UKGgGaAloD0MIKowtBLnEcECUhpRSlGgVTRQBaBZHQJQQrP2PDHh1fZQoaAZoCWgPQwikiAyrOGRwQJSGlFKUaBVNIgFoFkdAlBC3eSB9TnV9lChoBmgJaA9DCB6oUx7dRXJAlIaUUpRoFU1PAWgWR0CUEUXAM2FWdX2UKGgGaAloD0MIls/yPDgNcECUhpRSlGgVTSoBaBZHQJQSnrD63y91fZQoaAZoCWgPQwjt0obDUg1vQJSGlFKUaBVNRQFoFkdAlBLDBMzuW3V9lChoBmgJaA9DCE8/qIsUJm5AlIaUUpRoFU0UAWgWR0CUE7EgW8AadX2UKGgGaAloD0MI0PBmDV74b0CUhpRSlGgVTRMBaBZHQJQUogQpWmx1fZQoaAZoCWgPQwgr3sg8ci5xQJSGlFKUaBVNEwFoFkdAlBTysXBP9HV9lChoBmgJaA9DCMOedvgr4XBAlIaUUpRoFU0yAWgWR0CUFgmNipeedX2UKGgGaAloD0MIFM0DWKSPcECUhpRSlGgVTTIBaBZHQJQXTTH80k51fZQoaAZoCWgPQwiAft+/+bNtQJSGlFKUaBVNMgFoFkdAlBeKMJhOQHV9lChoBmgJaA9DCAd+VMN+Hm9AlIaUUpRoFUv/aBZHQJQZtagVXV91fZQoaAZoCWgPQwj6K2SuDJ9oQJSGlFKUaBVN6ANoFkdAlBv5PM0P6XV9lChoBmgJaA9DCKvQQCwbFW9AlIaUUpRoFU0NAWgWR0CUHFHFxXGPdX2UKGgGaAloD0MIhugQOFK5cUCUhpRSlGgVTRcBaBZHQJQc1dMTN+t1fZQoaAZoCWgPQwjSAN4CyYtyQJSGlFKUaBVNSQNoFkdAlB0GXXyy2XV9lChoBmgJaA9DCP0RhgHL9HJAlIaUUpRoFU1IAWgWR0CUHRVN5+pgdX2UKGgGaAloD0MIzefc7fpIb0CUhpRSlGgVTQoBaBZHQJQdSbONYKZ1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
lunar_lander_agent_01/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c74b5d2d8204db8d3293ae1623ac7632fe5fec82241ea75b17f360bd203ec47
|
3 |
+
size 88057
|
lunar_lander_agent_01/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b752db7cdbdb0247bc3465e361b3f6439309cb0ae763839834a1684764ba2c4
|
3 |
+
size 43201
|
lunar_lander_agent_01/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
lunar_lander_agent_01/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (188 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 259.9520277643862, "std_reward": 13.400852362341475, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-13T19:24:35.169119"}
|