Upload tokenization_dream.py
Browse files- tokenization_dream.py +367 -0
tokenization_dream.py
ADDED
|
@@ -0,0 +1,367 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 The Dream team, HKUNLP Group and The HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This code is based on Qwen's implementations in this library.
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
"""Tokenization classes for Dream."""
|
| 17 |
+
|
| 18 |
+
import json
|
| 19 |
+
import os
|
| 20 |
+
import unicodedata
|
| 21 |
+
from functools import lru_cache
|
| 22 |
+
from typing import Optional, Tuple
|
| 23 |
+
|
| 24 |
+
import regex as re
|
| 25 |
+
|
| 26 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
| 27 |
+
from transformers.utils import logging
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
logger = logging.get_logger(__name__)
|
| 31 |
+
|
| 32 |
+
VOCAB_FILES_NAMES = {
|
| 33 |
+
"vocab_file": "vocab.json",
|
| 34 |
+
"merges_file": "merges.txt",
|
| 35 |
+
}
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
MAX_MODEL_INPUT_SIZES = {"dream/dream-tokenizer": 32768}
|
| 39 |
+
|
| 40 |
+
PRETOKENIZE_REGEX = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
@lru_cache()
|
| 44 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.bytes_to_unicode
|
| 45 |
+
def bytes_to_unicode():
|
| 46 |
+
"""
|
| 47 |
+
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
|
| 48 |
+
characters the bpe code barfs on.
|
| 49 |
+
|
| 50 |
+
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
|
| 51 |
+
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
|
| 52 |
+
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
|
| 53 |
+
tables between utf-8 bytes and unicode strings.
|
| 54 |
+
"""
|
| 55 |
+
bs = (
|
| 56 |
+
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
|
| 57 |
+
)
|
| 58 |
+
cs = bs[:]
|
| 59 |
+
n = 0
|
| 60 |
+
for b in range(2**8):
|
| 61 |
+
if b not in bs:
|
| 62 |
+
bs.append(b)
|
| 63 |
+
cs.append(2**8 + n)
|
| 64 |
+
n += 1
|
| 65 |
+
cs = [chr(n) for n in cs]
|
| 66 |
+
return dict(zip(bs, cs))
|
| 67 |
+
|
| 68 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.get_pairs
|
| 69 |
+
def get_pairs(word):
|
| 70 |
+
"""
|
| 71 |
+
Return set of symbol pairs in a word.
|
| 72 |
+
|
| 73 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
| 74 |
+
"""
|
| 75 |
+
pairs = set()
|
| 76 |
+
prev_char = word[0]
|
| 77 |
+
for char in word[1:]:
|
| 78 |
+
pairs.add((prev_char, char))
|
| 79 |
+
prev_char = char
|
| 80 |
+
return pairs
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
class DreamTokenizer(PreTrainedTokenizer):
|
| 84 |
+
"""
|
| 85 |
+
Construct a Dream tokenizer. Based on byte-level Byte-Pair-Encoding.
|
| 86 |
+
|
| 87 |
+
Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will
|
| 88 |
+
be encoded differently whether it is at the beginning of the sentence (without space) or not:
|
| 89 |
+
|
| 90 |
+
```python
|
| 91 |
+
>>> from transformers import AutoTokenizer
|
| 92 |
+
|
| 93 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("Dream-org/Dream-v0-Base-7B", trust_remote_code=True)
|
| 94 |
+
>>> tokenizer("Hello world")["input_ids"]
|
| 95 |
+
[9707, 1879]
|
| 96 |
+
|
| 97 |
+
>>> tokenizer(" Hello world")["input_ids"]
|
| 98 |
+
[21927, 1879]
|
| 99 |
+
```
|
| 100 |
+
This is expected.
|
| 101 |
+
|
| 102 |
+
You should not use GPT2Tokenizer instead, because of the different pretokenization rules.
|
| 103 |
+
|
| 104 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
| 105 |
+
this superclass for more information regarding those methods.
|
| 106 |
+
|
| 107 |
+
Args:
|
| 108 |
+
vocab_file (`str`):
|
| 109 |
+
Path to the vocabulary file.
|
| 110 |
+
merges_file (`str`):
|
| 111 |
+
Path to the merges file.
|
| 112 |
+
errors (`str`, *optional*, defaults to `"replace"`):
|
| 113 |
+
Paradigm to follow when decoding bytes to UTF-8. See
|
| 114 |
+
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
|
| 115 |
+
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
| 116 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
| 117 |
+
token instead.
|
| 118 |
+
bos_token (`str`, *optional*):
|
| 119 |
+
The beginning of sequence token. Not applicable for this tokenizer.
|
| 120 |
+
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
| 121 |
+
The end of sequence token.
|
| 122 |
+
pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
| 123 |
+
The token used for padding, for example when batching sequences of different lengths.
|
| 124 |
+
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
|
| 125 |
+
Whether or not the model should cleanup the spaces that were added when splitting the input text during the
|
| 126 |
+
tokenization process. Not applicable to this tokenizer, since tokenization does not add spaces.
|
| 127 |
+
split_special_tokens (`bool`, *optional*, defaults to `False`):
|
| 128 |
+
Whether or not the special tokens should be split during the tokenization process. The default behavior is
|
| 129 |
+
to not split special tokens. This means that if `<|endoftext|>` is the `eos_token`, then `tokenizer.tokenize("<|endoftext|>") =
|
| 130 |
+
['<|endoftext|>`]. Otherwise, if `split_special_tokens=True`, then `tokenizer.tokenize("<|endoftext|>")` will be give `['<',
|
| 131 |
+
'|', 'endo', 'ft', 'ext', '|', '>']`. This argument is only supported for `slow` tokenizers for the moment.
|
| 132 |
+
"""
|
| 133 |
+
|
| 134 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
| 135 |
+
model_input_names = ["input_ids", "attention_mask"]
|
| 136 |
+
|
| 137 |
+
def __init__(
|
| 138 |
+
self,
|
| 139 |
+
vocab_file,
|
| 140 |
+
merges_file,
|
| 141 |
+
errors="replace",
|
| 142 |
+
unk_token="<|endoftext|>",
|
| 143 |
+
bos_token=None,
|
| 144 |
+
eos_token="<|endoftext|>",
|
| 145 |
+
pad_token="<|endoftext|>",
|
| 146 |
+
b_ner_token="<ner>",
|
| 147 |
+
e_ner_token="</ner>",
|
| 148 |
+
b_entity_token="<entity>",
|
| 149 |
+
e_entity_token="</entity>",
|
| 150 |
+
clean_up_tokenization_spaces=False,
|
| 151 |
+
split_special_tokens=False,
|
| 152 |
+
**kwargs,
|
| 153 |
+
):
|
| 154 |
+
# Dream vocab does not contain control tokens; added tokens need to be special
|
| 155 |
+
bos_token = (
|
| 156 |
+
AddedToken(bos_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
| 157 |
+
if isinstance(bos_token, str)
|
| 158 |
+
else bos_token
|
| 159 |
+
)
|
| 160 |
+
eos_token = (
|
| 161 |
+
AddedToken(eos_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
| 162 |
+
if isinstance(eos_token, str)
|
| 163 |
+
else eos_token
|
| 164 |
+
)
|
| 165 |
+
unk_token = (
|
| 166 |
+
AddedToken(unk_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
| 167 |
+
if isinstance(unk_token, str)
|
| 168 |
+
else unk_token
|
| 169 |
+
)
|
| 170 |
+
pad_token = (
|
| 171 |
+
AddedToken(pad_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
| 172 |
+
if isinstance(pad_token, str)
|
| 173 |
+
else pad_token
|
| 174 |
+
)
|
| 175 |
+
b_ner_token = (
|
| 176 |
+
AddedToken(b_ner_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
| 177 |
+
if isinstance(b_ner_token, str)
|
| 178 |
+
else b_ner_token
|
| 179 |
+
)
|
| 180 |
+
e_ner_token = (
|
| 181 |
+
AddedToken(e_ner_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
| 182 |
+
if isinstance(e_ner_token, str)
|
| 183 |
+
else e_ner_token
|
| 184 |
+
)
|
| 185 |
+
b_entity_token = (
|
| 186 |
+
AddedToken(b_entity_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
| 187 |
+
if isinstance(b_entity_token, str)
|
| 188 |
+
else b_entity_token
|
| 189 |
+
)
|
| 190 |
+
e_entity_token = (
|
| 191 |
+
AddedToken(e_entity_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
| 192 |
+
if isinstance(e_entity_token, str)
|
| 193 |
+
else e_entity_token
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
| 197 |
+
self.encoder = json.load(vocab_handle)
|
| 198 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
| 199 |
+
self.errors = errors # how to handle errors in decoding
|
| 200 |
+
self.byte_encoder = bytes_to_unicode()
|
| 201 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
| 202 |
+
bpe_merges = []
|
| 203 |
+
with open(merges_file, encoding="utf-8") as merges_handle:
|
| 204 |
+
for i, line in enumerate(merges_handle):
|
| 205 |
+
line = line.strip()
|
| 206 |
+
if (i == 0 and line.startswith("#version:")) or not line:
|
| 207 |
+
continue
|
| 208 |
+
bpe_merges.append(tuple(line.split()))
|
| 209 |
+
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
|
| 210 |
+
# NOTE: the cache can grow without bound and will get really large for long running processes
|
| 211 |
+
# (esp. for texts of language that do not use space between word, e.g. Chinese); technically
|
| 212 |
+
# not a memory leak but appears as one.
|
| 213 |
+
# GPT2Tokenizer has the same problem, so let's be consistent.
|
| 214 |
+
self.cache = {}
|
| 215 |
+
|
| 216 |
+
self.pat = re.compile(PRETOKENIZE_REGEX)
|
| 217 |
+
|
| 218 |
+
if kwargs.get("add_prefix_space", False):
|
| 219 |
+
logger.warning_once(
|
| 220 |
+
f"{self.__class__.__name} does not support `add_prefix_space`, setting it to True has no effect."
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
super().__init__(
|
| 224 |
+
errors=errors,
|
| 225 |
+
bos_token=bos_token,
|
| 226 |
+
eos_token=eos_token,
|
| 227 |
+
pad_token=pad_token,
|
| 228 |
+
unk_token=unk_token,
|
| 229 |
+
b_ner_token=b_ner_token,
|
| 230 |
+
e_ner_token=e_ner_token,
|
| 231 |
+
b_entity_token=b_entity_token,
|
| 232 |
+
e_entity_token=e_entity_token,
|
| 233 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 234 |
+
split_special_tokens=split_special_tokens,
|
| 235 |
+
**kwargs,
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
@property
|
| 239 |
+
def vocab_size(self) -> int:
|
| 240 |
+
return len(self.encoder)
|
| 241 |
+
|
| 242 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.get_vocab
|
| 243 |
+
def get_vocab(self):
|
| 244 |
+
return dict(self.encoder, **self.added_tokens_encoder)
|
| 245 |
+
|
| 246 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.bpe
|
| 247 |
+
def bpe(self, token):
|
| 248 |
+
if token in self.cache:
|
| 249 |
+
return self.cache[token]
|
| 250 |
+
word = tuple(token)
|
| 251 |
+
pairs = get_pairs(word)
|
| 252 |
+
|
| 253 |
+
if not pairs:
|
| 254 |
+
return token
|
| 255 |
+
|
| 256 |
+
while True:
|
| 257 |
+
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
| 258 |
+
if bigram not in self.bpe_ranks:
|
| 259 |
+
break
|
| 260 |
+
first, second = bigram
|
| 261 |
+
new_word = []
|
| 262 |
+
i = 0
|
| 263 |
+
while i < len(word):
|
| 264 |
+
try:
|
| 265 |
+
j = word.index(first, i)
|
| 266 |
+
except ValueError:
|
| 267 |
+
new_word.extend(word[i:])
|
| 268 |
+
break
|
| 269 |
+
else:
|
| 270 |
+
new_word.extend(word[i:j])
|
| 271 |
+
i = j
|
| 272 |
+
|
| 273 |
+
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
| 274 |
+
new_word.append(first + second)
|
| 275 |
+
i += 2
|
| 276 |
+
else:
|
| 277 |
+
new_word.append(word[i])
|
| 278 |
+
i += 1
|
| 279 |
+
new_word = tuple(new_word)
|
| 280 |
+
word = new_word
|
| 281 |
+
if len(word) == 1:
|
| 282 |
+
break
|
| 283 |
+
else:
|
| 284 |
+
pairs = get_pairs(word)
|
| 285 |
+
word = " ".join(word)
|
| 286 |
+
self.cache[token] = word
|
| 287 |
+
return word
|
| 288 |
+
|
| 289 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._tokenize
|
| 290 |
+
def _tokenize(self, text):
|
| 291 |
+
"""Tokenize a string."""
|
| 292 |
+
bpe_tokens = []
|
| 293 |
+
for token in re.findall(self.pat, text):
|
| 294 |
+
token = "".join(
|
| 295 |
+
self.byte_encoder[b] for b in token.encode("utf-8")
|
| 296 |
+
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
|
| 297 |
+
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
|
| 298 |
+
return bpe_tokens
|
| 299 |
+
|
| 300 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_token_to_id
|
| 301 |
+
def _convert_token_to_id(self, token):
|
| 302 |
+
"""Converts a token (str) in an id using the vocab."""
|
| 303 |
+
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
| 304 |
+
|
| 305 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_id_to_token
|
| 306 |
+
def _convert_id_to_token(self, index):
|
| 307 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
| 308 |
+
return self.decoder.get(index)
|
| 309 |
+
|
| 310 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.convert_tokens_to_string
|
| 311 |
+
def convert_tokens_to_string(self, tokens):
|
| 312 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
| 313 |
+
text = "".join(tokens)
|
| 314 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
|
| 315 |
+
return text
|
| 316 |
+
|
| 317 |
+
def decode(
|
| 318 |
+
self,
|
| 319 |
+
token_ids,
|
| 320 |
+
skip_special_tokens: bool = False,
|
| 321 |
+
clean_up_tokenization_spaces: Optional[bool] = False,
|
| 322 |
+
spaces_between_special_tokens: bool = False,
|
| 323 |
+
**kwargs,
|
| 324 |
+
) -> str:
|
| 325 |
+
# `spaces_between_special_tokens` defaults to True for _decode in slow tokenizers
|
| 326 |
+
# and cannot be configured elsewhere, but it should default to False for DreamTokenizer
|
| 327 |
+
return super().decode(
|
| 328 |
+
token_ids,
|
| 329 |
+
skip_special_tokens=skip_special_tokens,
|
| 330 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 331 |
+
spaces_between_special_tokens=spaces_between_special_tokens,
|
| 332 |
+
**kwargs,
|
| 333 |
+
)
|
| 334 |
+
|
| 335 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.save_vocabulary
|
| 336 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
| 337 |
+
if not os.path.isdir(save_directory):
|
| 338 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
| 339 |
+
return
|
| 340 |
+
vocab_file = os.path.join(
|
| 341 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
| 342 |
+
)
|
| 343 |
+
merge_file = os.path.join(
|
| 344 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
with open(vocab_file, "w", encoding="utf-8") as f:
|
| 348 |
+
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
|
| 349 |
+
|
| 350 |
+
index = 0
|
| 351 |
+
with open(merge_file, "w", encoding="utf-8") as writer:
|
| 352 |
+
writer.write("#version: 0.2\n")
|
| 353 |
+
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
|
| 354 |
+
if index != token_index:
|
| 355 |
+
logger.warning(
|
| 356 |
+
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
|
| 357 |
+
" Please check that the tokenizer is not corrupted!"
|
| 358 |
+
)
|
| 359 |
+
index = token_index
|
| 360 |
+
writer.write(" ".join(bpe_tokens) + "\n")
|
| 361 |
+
index += 1
|
| 362 |
+
|
| 363 |
+
return vocab_file, merge_file
|
| 364 |
+
|
| 365 |
+
def prepare_for_tokenization(self, text, **kwargs):
|
| 366 |
+
text = unicodedata.normalize("NFC", text)
|
| 367 |
+
return (text, kwargs)
|