update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice_11_0
|
7 |
+
metrics:
|
8 |
+
- wer
|
9 |
+
model-index:
|
10 |
+
- name: wav2vec2-large-mms-1b-turkish-colab
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Automatic Speech Recognition
|
14 |
+
type: automatic-speech-recognition
|
15 |
+
dataset:
|
16 |
+
name: common_voice_11_0
|
17 |
+
type: common_voice_11_0
|
18 |
+
config: tr
|
19 |
+
split: test
|
20 |
+
args: tr
|
21 |
+
metrics:
|
22 |
+
- name: Wer
|
23 |
+
type: wer
|
24 |
+
value: 0.2274112463363031
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# wav2vec2-large-mms-1b-turkish-colab
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the common_voice_11_0 dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.1588
|
35 |
+
- Wer: 0.2274
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 0.001
|
55 |
+
- train_batch_size: 32
|
56 |
+
- eval_batch_size: 8
|
57 |
+
- seed: 42
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- lr_scheduler_warmup_steps: 100
|
61 |
+
- num_epochs: 4
|
62 |
+
|
63 |
+
### Training results
|
64 |
+
|
65 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
66 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
67 |
+
| 7.9572 | 0.09 | 100 | 0.2279 | 0.2821 |
|
68 |
+
| 0.316 | 0.18 | 200 | 0.2011 | 0.2632 |
|
69 |
+
| 0.282 | 0.27 | 300 | 0.2027 | 0.2555 |
|
70 |
+
| 0.285 | 0.35 | 400 | 0.1978 | 0.2580 |
|
71 |
+
| 0.2741 | 0.44 | 500 | 0.1956 | 0.2596 |
|
72 |
+
| 0.2643 | 0.53 | 600 | 0.1790 | 0.2487 |
|
73 |
+
| 0.2758 | 0.62 | 700 | 0.1791 | 0.2463 |
|
74 |
+
| 0.2766 | 0.71 | 800 | 0.1791 | 0.2499 |
|
75 |
+
| 0.2733 | 0.8 | 900 | 0.1854 | 0.2610 |
|
76 |
+
| 0.2611 | 0.89 | 1000 | 0.1793 | 0.2464 |
|
77 |
+
| 0.2582 | 0.97 | 1100 | 0.1734 | 0.2460 |
|
78 |
+
| 0.2421 | 1.06 | 1200 | 0.1711 | 0.2408 |
|
79 |
+
| 0.2424 | 1.15 | 1300 | 0.1737 | 0.2434 |
|
80 |
+
| 0.2455 | 1.24 | 1400 | 0.1761 | 0.2489 |
|
81 |
+
| 0.2588 | 1.33 | 1500 | 0.1720 | 0.2410 |
|
82 |
+
| 0.2591 | 1.42 | 1600 | 0.1761 | 0.2444 |
|
83 |
+
| 0.2497 | 1.51 | 1700 | 0.1696 | 0.2381 |
|
84 |
+
| 0.254 | 1.59 | 1800 | 0.1728 | 0.2391 |
|
85 |
+
| 0.2479 | 1.68 | 1900 | 0.1724 | 0.2402 |
|
86 |
+
| 0.2395 | 1.77 | 2000 | 0.1726 | 0.2389 |
|
87 |
+
| 0.237 | 1.86 | 2100 | 0.1710 | 0.2378 |
|
88 |
+
| 0.2427 | 1.95 | 2200 | 0.1682 | 0.2348 |
|
89 |
+
| 0.2399 | 2.04 | 2300 | 0.1699 | 0.2371 |
|
90 |
+
| 0.2457 | 2.13 | 2400 | 0.1695 | 0.2357 |
|
91 |
+
| 0.2432 | 2.21 | 2500 | 0.1707 | 0.2387 |
|
92 |
+
| 0.229 | 2.3 | 2600 | 0.1687 | 0.2324 |
|
93 |
+
| 0.2413 | 2.39 | 2700 | 0.1681 | 0.2354 |
|
94 |
+
| 0.2286 | 2.48 | 2800 | 0.1664 | 0.2329 |
|
95 |
+
| 0.2405 | 2.57 | 2900 | 0.1646 | 0.2337 |
|
96 |
+
| 0.2266 | 2.66 | 3000 | 0.1668 | 0.2341 |
|
97 |
+
| 0.2337 | 2.75 | 3100 | 0.1642 | 0.2325 |
|
98 |
+
| 0.233 | 2.83 | 3200 | 0.1635 | 0.2301 |
|
99 |
+
| 0.2235 | 2.92 | 3300 | 0.1639 | 0.2342 |
|
100 |
+
| 0.2395 | 3.01 | 3400 | 0.1630 | 0.2305 |
|
101 |
+
| 0.2165 | 3.1 | 3500 | 0.1622 | 0.2305 |
|
102 |
+
| 0.2258 | 3.19 | 3600 | 0.1617 | 0.2296 |
|
103 |
+
| 0.2288 | 3.28 | 3700 | 0.1608 | 0.2307 |
|
104 |
+
| 0.218 | 3.37 | 3800 | 0.1610 | 0.2301 |
|
105 |
+
| 0.2242 | 3.45 | 3900 | 0.1604 | 0.2304 |
|
106 |
+
| 0.2248 | 3.54 | 4000 | 0.1603 | 0.2273 |
|
107 |
+
| 0.2223 | 3.63 | 4100 | 0.1595 | 0.2282 |
|
108 |
+
| 0.2161 | 3.72 | 4200 | 0.1593 | 0.2283 |
|
109 |
+
| 0.2281 | 3.81 | 4300 | 0.1592 | 0.2278 |
|
110 |
+
| 0.2236 | 3.9 | 4400 | 0.1593 | 0.2281 |
|
111 |
+
| 0.2277 | 3.99 | 4500 | 0.1588 | 0.2274 |
|
112 |
+
|
113 |
+
|
114 |
+
### Framework versions
|
115 |
+
|
116 |
+
- Transformers 4.31.0.dev0
|
117 |
+
- Pytorch 2.0.1+cu118
|
118 |
+
- Datasets 2.13.1
|
119 |
+
- Tokenizers 0.13.3
|