{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f641191e200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f641191e290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f641191e320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f641191e3b0>", "_build": "<function ActorCriticPolicy._build at 0x7f641191e440>", "forward": "<function ActorCriticPolicy.forward at 0x7f641191e4d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f641191e560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f641191e5f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f641191e680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f641191e710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f641191e7a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f641191e830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6411aae9c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1715893780383460736, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAECbyT2JomY+Gr6QvfOHbb7+ToU8y1c7vAAAAAAAAAAAM+ZNveM2tT7yEOA9/w9fvmIvGLz0k5g8AAAAAAAAAACz0UW9w7E7utbgTrg1F1+zlR3bOpu6bjcAAIA/AACAP2a6lz1cD0W65bX2ty/J+7IcKPe64hkSNwAAgD8AAIA/mu7xPBRUpLplJTa4uq0rs0Nbczpbb1E3AACAPwAAgD8aWxA9roeJuo2JHTl3gyc020H4OvEGN7gAAIA/AACAP4BuST3hzpe6/2nAu1cFFTgHOgk7UpIXtwAAgD8AAIA/8+PpPXyQkT8bwWo+vaqkvgTUxD3QZAI9AAAAAAAAAACzmjk9hRvGuQp1hLidmqOzQkYPO4+ZnDcAAIA/AACAP3Mb0T2ueZG6C+fuu8TL6TdYfHw6GsMVtwAAgD8AAIA/zYAsPa4dk7qg3SW59zgftPdrXTqWI0A4AACAPwAAgD8AXGE8Ulj6uVo5x7qEj1i1XYuju+V26TkAAIA/AACAP3Nx5j1SOEE+1HsbviCjGr7rYGE8Ij3mvAAAAAAAAAAAzSAvPbFZJD5LXKK9eQEvvkCuUb0lG4I9AAAAAAAAAABNJx89e/qNugOYWjp1u0W2QhBWOojqfLkAAIA/AACAPzPz/Lv2TES6HOyFurIhg7UA2UU7nGCeOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGUzD2Jzkp+MAWyUTegDjAF0lEdAlKl8KXv6THV9lChoBkdAYN81gH/tIGgHTegDaAhHQJSsTNY8uBd1fZQoaAZHQDDk31jAi3ZoB0v+aAhHQJSsPCpFTeh1fZQoaAZHQGOqa1Cw8nxoB03oA2gIR0CUuvDbrTpgdX2UKGgGR0BokSD5CWu6aAdN6ANoCEdAlLx1WXC0nnV9lChoBkdAZvzafSQYDWgHTegDaAhHQJS81qQA+6l1fZQoaAZHQGgZ+M6zVtpoB03oA2gIR0CU200bLlmwdX2UKGgGR0BotfyCnP3SaAdN6ANoCEdAlNs7cO9WZXV9lChoBkdAY05YWcjJMmgHTegDaAhHQJTb7Roh6jZ1fZQoaAZHQGTPsKTjebdoB03oA2gIR0CU3eI+nqFAdX2UKGgGR0Bdy6pDNQj2aAdN6ANoCEdAlOdF/pdKNHV9lChoBkdAZo4cABDG+GgHTegDaAhHQJTpK47Rv3t1fZQoaAZHQGOufC66J69oB03oA2gIR0CU7J6kZaV2dX2UKGgGR0BowAHC4z7/aAdN6ANoCEdAlPPyc0+C9XV9lChoBkdAcRMKFIuoP2gHTf4CaAhHQJT13ES/TLJ1fZQoaAZHQGU3VYyO7xxoB03oA2gIR0CU9edOZb6hdX2UKGgGR0Btup6po9LYaAdNPAJoCEdAlPYdl2/zrnV9lChoBkdAYtOSoOx0MmgHTegDaAhHQJT7/YZl4C91fZQoaAZHQGHIz6zmfXhoB03oA2gIR0CVBt9W6shgdX2UKGgGR0BhSo4Ia99MaAdN6ANoCEdAlQnP5Lytm3V9lChoBkdANh6P8yeqaWgHTQgBaAhHQJUMLs+mm+F1fZQoaAZHQGvygMc6vJRoB00NAmgIR0CVFf02LpA2dX2UKGgGR0BhkFz0Yj0MaAdN6ANoCEdAlRoc9W6shnV9lChoBkdAZmmekHlfZ2gHTegDaAhHQJUag5tFa0R1fZQoaAZHQBPpyp71Iy1oB0v8aAhHQJUeybwz+FV1fZQoaAZHQGZrCBwuM/BoB03oA2gIR0CVOIC1Z1V6dX2UKGgGR0BhUJYaHbh4aAdN6ANoCEdAlThyM1jy4HV9lChoBkdAZ9mcmShakmgHTegDaAhHQJU5Or+5vtN1fZQoaAZHQGT61R+BpYdoB03oA2gIR0CVO9rd30PIdX2UKGgGR0BhAzpxFRYSaAdN6ANoCEdAlUXXZwn6VXV9lChoBkdAYQgkka/ATWgHTegDaAhHQJVHw++ueSV1fZQoaAZHQDr/PPcBU71oB0v7aAhHQJVKn8dgfEJ1fZQoaAZHQF/pMVk+X7doB03oA2gIR0CVU1wRGtp3dX2UKGgGR0Bg6vjp9qk/aAdN6ANoCEdAlVYfoNd7fHV9lChoBkdAZz97x/d69mgHTegDaAhHQJVWc5n13+x1fZQoaAZHQGM8lI/Z/TdoB03oA2gIR0CVXZ7zkIX1dX2UKGgGR0Bw+hR1oxpMaAdNBQJoCEdAlWU8MqjJuHV9lChoBkdAZKWl0o0ALmgHTegDaAhHQJVnucjJMg51fZQoaAZHQHBLV10T101oB02iAWgIR0CVaS4xUNrkdX2UKGgGR0BlroDA8B+4aAdN6ANoCEdAlWrrhisnzHV9lChoBkdAZvXcDbJwKmgHTegDaAhHQJV4yCjDbah1fZQoaAZHQGRTzFVDKHRoB03oA2gIR0CVfLoTwlSkdX2UKGgGR0BjGom1IAfdaAdN6ANoCEdAlX0fvWpZOnV9lChoBkdAY1WJaaCtimgHTegDaAhHQJWBNUm2LHd1fZQoaAZHQGISvkJa7mNoB03oA2gIR0CVmMC9AX2vdX2UKGgGR0BgoOf9P1tgaAdN6ANoCEdAlZlgSSNfgXV9lChoBkdAcEbLronrp2gHTaQBaAhHQJWqikadc0N1fZQoaAZHQGG3lmOEM9doB03oA2gIR0CVqtTQ3PzGdX2UKGgGR0BkMn9aUzKtaAdN6ANoCEdAla2kOuq3mXV9lChoBkdAcZ/c580DU2gHTZUDaAhHQJWxVeXzDoB1fZQoaAZHQGAmux0MgEFoB03oA2gIR0CVtUB9kSVXdX2UKGgGR0Bnf0CkoF3ZaAdN6ANoCEdAlbcmqT8pC3V9lChoBkdAYihFvQ4S6GgHTegDaAhHQJW8FkkKNQ11fZQoaAZHQGIxkyLyc1BoB03oA2gIR0CVwhbMHKOldX2UKGgGR0Bj25cHGCI2aAdN6ANoCEdAlcQhMSK3u3V9lChoBkdAYs0ZCOWBz2gHTegDaAhHQJXFS2lVLjB1fZQoaAZHQGLRoZQ53khoB03oA2gIR0CVxsEUCaJAdX2UKGgGR0A2k6z3RG+caAdNBgFoCEdAlc434sVclnV9lChoBkdAcOK+CbtqpWgHTV8CaAhHQJXUsxGlQ/J1fZQoaAZHQGHksIu5BkZoB03oA2gIR0CV1tvhIe5ndX2UKGgGR0Bju9oJzDGcaAdN6ANoCEdAlddYMjNY83V9lChoBkdAY8zFQVKwp2gHTegDaAhHQJXcwDMeOn51fZQoaAZHQGh7RO1v2oNoB03oA2gIR0CV9W20AtFsdX2UKGgGR0BYlpHqeK8+aAdN6ANoCEdAlfYEkrwvx3V9lChoBkdAbF4tBfKISGgHTckCaAhHQJX62J79hql1fZQoaAZHQG6iTGPxQSBoB01UAWgIR0CWAdk+HJtBdX2UKGgGR0BnQoj0L+glaAdN6ANoCEdAlgOzVYp2EHV9lChoBkdAYqYx1PnB+GgHTegDaAhHQJYGqt6ol2N1fZQoaAZHQGTPEfLcKw9oB03oA2gIR0CWCoRqGlANdX2UKGgGR0BrWOE25xzaaAdN2wNoCEdAlhGx9gF5fXV9lChoBkdAcEJrk8zQ/2gHTUUBaAhHQJYUAjcEeQx1fZQoaAZHQG72wUHpr1xoB02NAmgIR0CWGoRIjGDMdX2UKGgGR0BhgZbfP5YYaAdN6ANoCEdAliBN3W4EwHV9lChoBkdAZLfXDm8ujGgHTegDaAhHQJYiL9XLeRB1fZQoaAZHQGFUayjYZl5oB03oA2gIR0CWIzjdHlOodX2UKGgGR0BoxMdHUc4paAdN6ANoCEdAliSoUzsQd3V9lChoBkdAZywQsf7rLWgHTegDaAhHQJYr3KT0QK91fZQoaAZHQHBLiP6sQupoB01CAmgIR0CWL4jVhCtzdX2UKGgGR0BivwU5+6RRaAdN6ANoCEdAljObbg0j1XV9lChoBkdAYHm0waisXGgHTegDaAhHQJY3qX3QD3d1fZQoaAZHQGe4C0F8ohJoB03oA2gIR0CWPk6PKdQPdX2UKGgGR0BkM0ZUDMePaAdN6ANoCEdAlj78y8BdU3V9lChoBkdARlF6cAimmGgHS/BoCEdAll4Asf7rLXV9lChoBkdAYnpbJwKjSGgHTegDaAhHQJZgrns9jgB1fZQoaAZHQGb6fdqL0jFoB03oA2gIR0CWZgwl0HQhdX2UKGgGR0BhQqAavRqoaAdN6ANoCEdAlmsgPEsJ6nV9lChoBkdAcUv8dPtUoGgHTY0DaAhHQJZxanMt9QZ1fZQoaAZHQGUvqPn0TURoB03oA2gIR0CWcXEhJRO2dX2UKGgGR0BgUnXsgMc7aAdN6ANoCEdAlnNaiGnGbXV9lChoBkdAcRCifQKKHmgHTTkDaAhHQJZ3pZKWcBl1fZQoaAZHQGOOBFd9lVdoB03oA2gIR0CWh4kfs/pudX2UKGgGR0BaBiM1jy4GaAdN6ANoCEdAloqMpkPMCHV9lChoBkdAX6iODJ2dNGgHTegDaAhHQJaMBhrnDBN1fZQoaAZHQG/94nfEXLxoB00qAWgIR0CWjGMNc4YKdX2UKGgGR0BinHlZHNHIaAdN6ANoCEdAlpYOqioKlnV9lChoBkdAYJufZmI0qGgHTegDaAhHQJaaQIomXw91fZQoaAZHQG/C0bkwN9ZoB00nA2gIR0CWnFhMajvedX2UKGgGR0BlI2Bz3h4uaAdN6ANoCEdAlp568xsVL3V9lChoBkdAcJZ0Nz8xbmgHTeACaAhHQJag1hnanJl1fZQoaAZHQGG6kdeY2KloB03oA2gIR0CWqSf3evZAdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |