mustapha commited on
Commit
049a4e1
1 Parent(s): c9860cd

PPO Agent, AJE_AGENT_2

Browse files

.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
AJE_AGENT_2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d915174f1b02d794bb9f438bfc3e889204fd34945aab9ba084f0885e4805c4ab
3
+ size 143646
AJE_AGENT_2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
1
+ 1.5.0
AJE_AGENT_2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f247420da70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f247420db00>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f247420db90>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f247420dc20>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f247420dcb0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f247420dd40>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f247420ddd0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f247420de60>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f247420def0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f247420df80>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2474215050>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f2474262420>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 8,
45
+ "num_timesteps": 2007040,
46
+ "_total_timesteps": 2000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652263202.127288,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAQAAAAAAALNaBj6gepA+I/dmvstkib4SY6o8z3IovQAAAAAAAAAAZppDvQg6lrz1d4i71HIRuhXwBL6CjcA6AACAPwAAgD+Y5oe+EPZjP07GAL9S0gm/rcjAvgopNr4AAAAAAAAAABpnK73cC1O8v76EvGEpizyF5L69tvJiPQAAgD8AAIA/Wi2nvRQYobp5X6S6/KyMtak2Hrp4bL05AACAPwAAgD+Asx69b2A7PdsKzr0lMny+fyu8vIJE67sAAAAAAAAAAE01hL0PjFw/AngfuhdWp75Mqdk8NtGPPAAAAAAAAAAA2iHqvUiQKz9FTAs++w2qvsutSjt6efy7AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwhLCIaUjAFDlHSUUpQu"
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.0035199999999999676,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVXBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9vBloshTcECUhpRSlIwBbJRNCQGMAXSUR0CgywEnLJS0dX2UKGgGaAloD0MI16AvvT23cUCUhpRSlGgVS+ZoFkdAoMsOLNwBHXV9lChoBmgJaA9DCI0ngjhP63BAlIaUUpRoFU09AWgWR0Cgy0PUz9CNdX2UKGgGaAloD0MIWtjTDv9LcUCUhpRSlGgVTSABaBZHQKDMcxSpBHF1fZQoaAZoCWgPQwhf7L34IiVzQJSGlFKUaBVNEgFoFkdAoMyu/zreInV9lChoBmgJaA9DCD4JbM6B3nFAlIaUUpRoFUvzaBZHQKDMsuLaVUx1fZQoaAZoCWgPQwicvwmFyC9yQJSGlFKUaBVL/2gWR0CgzMLp7kXDdX2UKGgGaAloD0MIJvxSPy+mcECUhpRSlGgVTRMBaBZHQKDM1Dn/1g91fZQoaAZoCWgPQwgJNq5/F/RxQJSGlFKUaBVL7mgWR0CgzOR82JizdX2UKGgGaAloD0MIo1wav/C+U0CUhpRSlGgVS9ZoFkdAoM0CgRK6F3V9lChoBmgJaA9DCKwahLndm3BAlIaUUpRoFU0GAWgWR0CgzR1D8cdYdX2UKGgGaAloD0MI0sPQ6qTDcUCUhpRSlGgVS/9oFkdAoNDScPOIInV9lChoBmgJaA9DCG8Sg8DKNXBAlIaUUpRoFUvxaBZHQKDQ7NPgvUV1fZQoaAZoCWgPQwjvHwvRIahvQJSGlFKUaBVL9mgWR0Cg0QoHs1KodX2UKGgGaAloD0MIdAzIXu86cUCUhpRSlGgVTRMBaBZHQKDROcHWz4V1fZQoaAZoCWgPQwhhxD4BVHVyQJSGlFKUaBVNFAFoFkdAoNF2RPoFFHV9lChoBmgJaA9DCM14W+n11nBAlIaUUpRoFUv3aBZHQKDRfb3XZoR1fZQoaAZoCWgPQwh40Oy6t11uQJSGlFKUaBVNGwFoFkdAoNGow/PgN3V9lChoBmgJaA9DCI8zTdh+XXBAlIaUUpRoFU1bAWgWR0Cg0e1bzK9xdX2UKGgGaAloD0MIUFWhgZhOcUCUhpRSlGgVTQYBaBZHQKDTABkqc3F1fZQoaAZoCWgPQwihEtcx7mlxQJSGlFKUaBVNIQFoFkdAoNMpFuvU0HV9lChoBmgJaA9DCC/gZYYNM3FAlIaUUpRoFU0FAWgWR0Cg00u+7Dl6dX2UKGgGaAloD0MI9poeFBTfckCUhpRSlGgVTSEBaBZHQKDTWzvZyuJ1fZQoaAZoCWgPQwjVk/lH32FvQJSGlFKUaBVNEQFoFkdAoNOeLFXJYHV9lChoBmgJaA9DCENTdvrBcHBAlIaUUpRoFU0RAWgWR0Cg09CNCJGfdX2UKGgGaAloD0MI7X+AterOcECUhpRSlGgVTTABaBZHQKDUWr5qM3t1fZQoaAZoCWgPQwjh0cYRKwdxQJSGlFKUaBVNbQFoFkdAoNRfDk2gnXV9lChoBmgJaA9DCJ7Swfo/K1FAlIaUUpRoFUupaBZHQKDUqOBlMAZ1fZQoaAZoCWgPQwiDpE+r6PdtQJSGlFKUaBVNAgFoFkdAoNUPGp++d3V9lChoBmgJaA9DCIm3zr9dwm1AlIaUUpRoFUv5aBZHQKDVHs7+1jR1fZQoaAZoCWgPQwhvumWH+P1wQJSGlFKUaBVNAAFoFkdAoNVGTV2A5XV9lChoBmgJaA9DCF36l6SyRG5AlIaUUpRoFUvwaBZHQKDVnlUZNwl1fZQoaAZoCWgPQwiMSX8vBUNxQJSGlFKUaBVNNAFoFkdAoNXwhUzbe3V9lChoBmgJaA9DCOwX7IZt/HBAlIaUUpRoFUvqaBZHQKDWawLVnVZ1fZQoaAZoCWgPQwgZkpOJW6FyQJSGlFKUaBVNHQFoFkdAoNZ48Md92HV9lChoBmgJaA9DCPz+zYtTk3JAlIaUUpRoFU1BAWgWR0Cg1sBzmwJPdX2UKGgGaAloD0MIgzKNJheXc0CUhpRSlGgVS+ZoFkdAoNbDYkE9uHV9lChoBmgJaA9DCBTQRNhwpHJAlIaUUpRoFUvuaBZHQKDW4ICU5dZ1fZQoaAZoCWgPQwh2w7ZFmRtyQJSGlFKUaBVNFAFoFkdAoNdRHTZxrHV9lChoBmgJaA9DCAlszsHz7HBAlIaUUpRoFU0bAWgWR0Cg18NpdrwfdX2UKGgGaAloD0MIF2ahnRPZcECUhpRSlGgVS/loFkdAoNfYSHuZ1HV9lChoBmgJaA9DCEiI8gUtenFAlIaUUpRoFUvuaBZHQKDYQb3Gn4x1fZQoaAZoCWgPQwhwKHy2DvVyQJSGlFKUaBVNBQFoFkdAoNh/yNGViXV9lChoBmgJaA9DCF6+9WH97HFAlIaUUpRoFUvjaBZHQKDYrXDm8ul1fZQoaAZoCWgPQwiTcYxkj0NuQJSGlFKUaBVNNAFoFkdAoNu+NNrTIHV9lChoBmgJaA9DCNwPeGAAcnFAlIaUUpRoFU0kAWgWR0Cg3Ff3N9pidX2UKGgGaAloD0MI88r1thmvcUCUhpRSlGgVTRQBaBZHQKDcuXAuZkV1fZQoaAZoCWgPQwgXLUDbqkRxQJSGlFKUaBVNDgFoFkdAoNzD1schknV9lChoBmgJaA9DCCqtvyWAXnNAlIaUUpRoFUv0aBZHQKDdSY4yXUp1fZQoaAZoCWgPQwhjYYicPu5xQJSGlFKUaBVL/GgWR0Cg3ZQf6oETdX2UKGgGaAloD0MIpPyk2ueDcECUhpRSlGgVTTgBaBZHQKDdqAKfFrF1fZQoaAZoCWgPQwjX3qeqkEJxQJSGlFKUaBVNCAFoFkdAoN5BOi35OHV9lChoBmgJaA9DCG+gwDu5rnBAlIaUUpRoFU0dAWgWR0Cg3xNL127ndX2UKGgGaAloD0MIFeKReLl0cECUhpRSlGgVTQwBaBZHQKDfV4i5d4V1fZQoaAZoCWgPQwjVITfDDWRRQJSGlFKUaBVL1GgWR0Cg38HtfG+9dX2UKGgGaAloD0MIR3Nk5dcFcECUhpRSlGgVTUoBaBZHQKDf/n2ZiNN1fZQoaAZoCWgPQwiP+1brROhvQJSGlFKUaBVL82gWR0Cg4AVuzhP1dX2UKGgGaAloD0MIMWE0K1s+b0CUhpRSlGgVTRYBaBZHQKDgELVnVXp1fZQoaAZoCWgPQwiD2m/thLdyQJSGlFKUaBVNAAFoFkdAoOC5q7Ack3V9lChoBmgJaA9DCEj99QoLBENAlIaUUpRoFUvCaBZHQKDhIIOYplV1fZQoaAZoCWgPQwjz5nCtditvQJSGlFKUaBVNEwFoFkdAoOGzc9GI9HV9lChoBmgJaA9DCLJoOjsZp1xAlIaUUpRoFU3oA2gWR0Cg4oEmQbMpdX2UKGgGaAloD0MIMgQAx972cECUhpRSlGgVTSUBaBZHQKDinKDCgsd1fZQoaAZoCWgPQwikNQadEKdwQJSGlFKUaBVNEwFoFkdAoOKhpJwsG3V9lChoBmgJaA9DCOm2RC44L25AlIaUUpRoFU0WAWgWR0Cg4q0kfLcLdX2UKGgGaAloD0MIdqc7T7x1cUCUhpRSlGgVTSQBaBZHQKDi0Ym9g4R1fZQoaAZoCWgPQwjvqDEhJk1xQJSGlFKUaBVNPAFoFkdAoOOg0uUUwnV9lChoBmgJaA9DCJQSglV1DXFAlIaUUpRoFU0VAWgWR0Cg5CnYQJ5WdX2UKGgGaAloD0MIxm00gDeQcECUhpRSlGgVS+loFkdAoORqjN6gNHV9lChoBmgJaA9DCLNfd7ozYXFAlIaUUpRoFUv/aBZHQKDkxQuVX3h1fZQoaAZoCWgPQwjEsMOY9GhxQJSGlFKUaBVNDAFoFkdAoOdRXEIgNnV9lChoBmgJaA9DCChEwCFUkm5AlIaUUpRoFUv+aBZHQKDnbBDXvph1fZQoaAZoCWgPQwhpAG+BBJNxQJSGlFKUaBVNFAFoFkdAoOdxdv863nV9lChoBmgJaA9DCHKlngUhl25AlIaUUpRoFUv7aBZHQKDoO5VfeDZ1fZQoaAZoCWgPQwjR56OMONBxQJSGlFKUaBVL7GgWR0Cg6Ovgm7aqdX2UKGgGaAloD0MIWJI81zddcUCUhpRSlGgVTQoBaBZHQKDo9Pw/gR91fZQoaAZoCWgPQwjAQubKIGJyQJSGlFKUaBVNjAJoFkdAoOlrDEWIoHV9lChoBmgJaA9DCPmBqzzBZHBAlIaUUpRoFU0EAWgWR0Cg6XHiNsFddX2UKGgGaAloD0MIpfRMLzGGcECUhpRSlGgVTRQBaBZHQKDpwmXw9aF1fZQoaAZoCWgPQwirdeJyvGRuQJSGlFKUaBVNOAFoFkdAoOn0IeHSGHV9lChoBmgJaA9DCNR+aydKQ3JAlIaUUpRoFU0sAWgWR0Cg6fnKfWc0dX2UKGgGaAloD0MIdzBin0CacUCUhpRSlGgVTToBaBZHQKDq4ZML4N91fZQoaAZoCWgPQwj6QzNProJwQJSGlFKUaBVL8GgWR0Cg6uX9itq6dX2UKGgGaAloD0MI3EjZImmwbkCUhpRSlGgVTRUBaBZHQKDrKmLtNSJ1fZQoaAZoCWgPQwjg2R69oZ1xQJSGlFKUaBVNFQFoFkdAoOu1w1ivxHV9lChoBmgJaA9DCDsdyHqqjnFAlIaUUpRoFUvtaBZHQKDrtfqHGjt1fZQoaAZoCWgPQwhvERjrG2VxQJSGlFKUaBVNIQFoFkdAoOvKODJ2dXV9lChoBmgJaA9DCJMbRdbaH3FAlIaUUpRoFUv8aBZHQKDsBgE2YOV1fZQoaAZoCWgPQwhPXfksjxxwQJSGlFKUaBVNDwFoFkdAoOwu05U96nV9lChoBmgJaA9DCK8I/reSvXFAlIaUUpRoFUviaBZHQKDsq42jwhJ1fZQoaAZoCWgPQwj9Z82Pf9BxQJSGlFKUaBVL7WgWR0Cg7MLnDBM0dX2UKGgGaAloD0MIzCTqBd/CcECUhpRSlGgVS/NoFkdAoO0H7N0NjXV9lChoBmgJaA9DCOHOhZFeNXJAlIaUUpRoFUv3aBZHQKDthqNZNfx1fZQoaAZoCWgPQwhIaqFkctRwQJSGlFKUaBVNEwFoFkdAoO3Ztm+TNnV9lChoBmgJaA9DCEKz696KRm5AlIaUUpRoFU0gAWgWR0Cg7eEqtozvdX2UKGgGaAloD0MIukvirIgbckCUhpRSlGgVS/9oFkdAoO4U495hSnV9lChoBmgJaA9DCH9t/fRfxXNAlIaUUpRoFU0aAWgWR0Cg7h3IuGsWdX2UKGgGaAloD0MIUrXdBJ+9cECUhpRSlGgVS/doFkdAoO6saKk2xnV9lChoBmgJaA9DCN3R/3Itm3BAlIaUUpRoFU0PAWgWR0Cg7sOOCGvfdX2UKGgGaAloD0MIIcztXu4rbUCUhpRSlGgVTQ8BaBZHQKDvIqMm4RV1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 980,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 128,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
AJE_AGENT_2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d60e7adaefd62222499d712459705d42dce12043152f466009f2c7121222324
3
+ size 84829
AJE_AGENT_2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f07cb56d458979be5ceef1ef6b5c7aca22e52ddd273713aad3cff0f758e4efe0
3
+ size 43201
AJE_AGENT_2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
AJE_AGENT_2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 269.37 +/- 21.82
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f247420da70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f247420db00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f247420db90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f247420dc20>", "_build": "<function ActorCriticPolicy._build at 0x7f247420dcb0>", "forward": "<function ActorCriticPolicy.forward at 0x7f247420dd40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f247420ddd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f247420de60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f247420def0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f247420df80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2474215050>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2474262420>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 8, "num_timesteps": 2007040, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652263202.127288, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAQAAAAAAALNaBj6gepA+I/dmvstkib4SY6o8z3IovQAAAAAAAAAAZppDvQg6lrz1d4i71HIRuhXwBL6CjcA6AACAPwAAgD+Y5oe+EPZjP07GAL9S0gm/rcjAvgopNr4AAAAAAAAAABpnK73cC1O8v76EvGEpizyF5L69tvJiPQAAgD8AAIA/Wi2nvRQYobp5X6S6/KyMtak2Hrp4bL05AACAPwAAgD+Asx69b2A7PdsKzr0lMny+fyu8vIJE67sAAAAAAAAAAE01hL0PjFw/AngfuhdWp75Mqdk8NtGPPAAAAAAAAAAA2iHqvUiQKz9FTAs++w2qvsutSjt6efy7AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwhLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVXBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9vBloshTcECUhpRSlIwBbJRNCQGMAXSUR0CgywEnLJS0dX2UKGgGaAloD0MI16AvvT23cUCUhpRSlGgVS+ZoFkdAoMsOLNwBHXV9lChoBmgJaA9DCI0ngjhP63BAlIaUUpRoFU09AWgWR0Cgy0PUz9CNdX2UKGgGaAloD0MIWtjTDv9LcUCUhpRSlGgVTSABaBZHQKDMcxSpBHF1fZQoaAZoCWgPQwhf7L34IiVzQJSGlFKUaBVNEgFoFkdAoMyu/zreInV9lChoBmgJaA9DCD4JbM6B3nFAlIaUUpRoFUvzaBZHQKDMsuLaVUx1fZQoaAZoCWgPQwicvwmFyC9yQJSGlFKUaBVL/2gWR0CgzMLp7kXDdX2UKGgGaAloD0MIJvxSPy+mcECUhpRSlGgVTRMBaBZHQKDM1Dn/1g91fZQoaAZoCWgPQwgJNq5/F/RxQJSGlFKUaBVL7mgWR0CgzOR82JizdX2UKGgGaAloD0MIo1wav/C+U0CUhpRSlGgVS9ZoFkdAoM0CgRK6F3V9lChoBmgJaA9DCKwahLndm3BAlIaUUpRoFU0GAWgWR0CgzR1D8cdYdX2UKGgGaAloD0MI0sPQ6qTDcUCUhpRSlGgVS/9oFkdAoNDScPOIInV9lChoBmgJaA9DCG8Sg8DKNXBAlIaUUpRoFUvxaBZHQKDQ7NPgvUV1fZQoaAZoCWgPQwjvHwvRIahvQJSGlFKUaBVL9mgWR0Cg0QoHs1KodX2UKGgGaAloD0MIdAzIXu86cUCUhpRSlGgVTRMBaBZHQKDROcHWz4V1fZQoaAZoCWgPQwhhxD4BVHVyQJSGlFKUaBVNFAFoFkdAoNF2RPoFFHV9lChoBmgJaA9DCM14W+n11nBAlIaUUpRoFUv3aBZHQKDRfb3XZoR1fZQoaAZoCWgPQwh40Oy6t11uQJSGlFKUaBVNGwFoFkdAoNGow/PgN3V9lChoBmgJaA9DCI8zTdh+XXBAlIaUUpRoFU1bAWgWR0Cg0e1bzK9xdX2UKGgGaAloD0MIUFWhgZhOcUCUhpRSlGgVTQYBaBZHQKDTABkqc3F1fZQoaAZoCWgPQwihEtcx7mlxQJSGlFKUaBVNIQFoFkdAoNMpFuvU0HV9lChoBmgJaA9DCC/gZYYNM3FAlIaUUpRoFU0FAWgWR0Cg00u+7Dl6dX2UKGgGaAloD0MI9poeFBTfckCUhpRSlGgVTSEBaBZHQKDTWzvZyuJ1fZQoaAZoCWgPQwjVk/lH32FvQJSGlFKUaBVNEQFoFkdAoNOeLFXJYHV9lChoBmgJaA9DCENTdvrBcHBAlIaUUpRoFU0RAWgWR0Cg09CNCJGfdX2UKGgGaAloD0MI7X+AterOcECUhpRSlGgVTTABaBZHQKDUWr5qM3t1fZQoaAZoCWgPQwjh0cYRKwdxQJSGlFKUaBVNbQFoFkdAoNRfDk2gnXV9lChoBmgJaA9DCJ7Swfo/K1FAlIaUUpRoFUupaBZHQKDUqOBlMAZ1fZQoaAZoCWgPQwiDpE+r6PdtQJSGlFKUaBVNAgFoFkdAoNUPGp++d3V9lChoBmgJaA9DCIm3zr9dwm1AlIaUUpRoFUv5aBZHQKDVHs7+1jR1fZQoaAZoCWgPQwhvumWH+P1wQJSGlFKUaBVNAAFoFkdAoNVGTV2A5XV9lChoBmgJaA9DCF36l6SyRG5AlIaUUpRoFUvwaBZHQKDVnlUZNwl1fZQoaAZoCWgPQwiMSX8vBUNxQJSGlFKUaBVNNAFoFkdAoNXwhUzbe3V9lChoBmgJaA9DCOwX7IZt/HBAlIaUUpRoFUvqaBZHQKDWawLVnVZ1fZQoaAZoCWgPQwgZkpOJW6FyQJSGlFKUaBVNHQFoFkdAoNZ48Md92HV9lChoBmgJaA9DCPz+zYtTk3JAlIaUUpRoFU1BAWgWR0Cg1sBzmwJPdX2UKGgGaAloD0MIgzKNJheXc0CUhpRSlGgVS+ZoFkdAoNbDYkE9uHV9lChoBmgJaA9DCBTQRNhwpHJAlIaUUpRoFUvuaBZHQKDW4ICU5dZ1fZQoaAZoCWgPQwh2w7ZFmRtyQJSGlFKUaBVNFAFoFkdAoNdRHTZxrHV9lChoBmgJaA9DCAlszsHz7HBAlIaUUpRoFU0bAWgWR0Cg18NpdrwfdX2UKGgGaAloD0MIF2ahnRPZcECUhpRSlGgVS/loFkdAoNfYSHuZ1HV9lChoBmgJaA9DCEiI8gUtenFAlIaUUpRoFUvuaBZHQKDYQb3Gn4x1fZQoaAZoCWgPQwhwKHy2DvVyQJSGlFKUaBVNBQFoFkdAoNh/yNGViXV9lChoBmgJaA9DCF6+9WH97HFAlIaUUpRoFUvjaBZHQKDYrXDm8ul1fZQoaAZoCWgPQwiTcYxkj0NuQJSGlFKUaBVNNAFoFkdAoNu+NNrTIHV9lChoBmgJaA9DCNwPeGAAcnFAlIaUUpRoFU0kAWgWR0Cg3Ff3N9pidX2UKGgGaAloD0MI88r1thmvcUCUhpRSlGgVTRQBaBZHQKDcuXAuZkV1fZQoaAZoCWgPQwgXLUDbqkRxQJSGlFKUaBVNDgFoFkdAoNzD1schknV9lChoBmgJaA9DCCqtvyWAXnNAlIaUUpRoFUv0aBZHQKDdSY4yXUp1fZQoaAZoCWgPQwhjYYicPu5xQJSGlFKUaBVL/GgWR0Cg3ZQf6oETdX2UKGgGaAloD0MIpPyk2ueDcECUhpRSlGgVTTgBaBZHQKDdqAKfFrF1fZQoaAZoCWgPQwjX3qeqkEJxQJSGlFKUaBVNCAFoFkdAoN5BOi35OHV9lChoBmgJaA9DCG+gwDu5rnBAlIaUUpRoFU0dAWgWR0Cg3xNL127ndX2UKGgGaAloD0MIFeKReLl0cECUhpRSlGgVTQwBaBZHQKDfV4i5d4V1fZQoaAZoCWgPQwjVITfDDWRRQJSGlFKUaBVL1GgWR0Cg38HtfG+9dX2UKGgGaAloD0MIR3Nk5dcFcECUhpRSlGgVTUoBaBZHQKDf/n2ZiNN1fZQoaAZoCWgPQwiP+1brROhvQJSGlFKUaBVL82gWR0Cg4AVuzhP1dX2UKGgGaAloD0MIMWE0K1s+b0CUhpRSlGgVTRYBaBZHQKDgELVnVXp1fZQoaAZoCWgPQwiD2m/thLdyQJSGlFKUaBVNAAFoFkdAoOC5q7Ack3V9lChoBmgJaA9DCEj99QoLBENAlIaUUpRoFUvCaBZHQKDhIIOYplV1fZQoaAZoCWgPQwjz5nCtditvQJSGlFKUaBVNEwFoFkdAoOGzc9GI9HV9lChoBmgJaA9DCLJoOjsZp1xAlIaUUpRoFU3oA2gWR0Cg4oEmQbMpdX2UKGgGaAloD0MIMgQAx972cECUhpRSlGgVTSUBaBZHQKDinKDCgsd1fZQoaAZoCWgPQwikNQadEKdwQJSGlFKUaBVNEwFoFkdAoOKhpJwsG3V9lChoBmgJaA9DCOm2RC44L25AlIaUUpRoFU0WAWgWR0Cg4q0kfLcLdX2UKGgGaAloD0MIdqc7T7x1cUCUhpRSlGgVTSQBaBZHQKDi0Ym9g4R1fZQoaAZoCWgPQwjvqDEhJk1xQJSGlFKUaBVNPAFoFkdAoOOg0uUUwnV9lChoBmgJaA9DCJQSglV1DXFAlIaUUpRoFU0VAWgWR0Cg5CnYQJ5WdX2UKGgGaAloD0MIxm00gDeQcECUhpRSlGgVS+loFkdAoORqjN6gNHV9lChoBmgJaA9DCLNfd7ozYXFAlIaUUpRoFUv/aBZHQKDkxQuVX3h1fZQoaAZoCWgPQwjEsMOY9GhxQJSGlFKUaBVNDAFoFkdAoOdRXEIgNnV9lChoBmgJaA9DCChEwCFUkm5AlIaUUpRoFUv+aBZHQKDnbBDXvph1fZQoaAZoCWgPQwhpAG+BBJNxQJSGlFKUaBVNFAFoFkdAoOdxdv863nV9lChoBmgJaA9DCHKlngUhl25AlIaUUpRoFUv7aBZHQKDoO5VfeDZ1fZQoaAZoCWgPQwjR56OMONBxQJSGlFKUaBVL7GgWR0Cg6Ovgm7aqdX2UKGgGaAloD0MIWJI81zddcUCUhpRSlGgVTQoBaBZHQKDo9Pw/gR91fZQoaAZoCWgPQwjAQubKIGJyQJSGlFKUaBVNjAJoFkdAoOlrDEWIoHV9lChoBmgJaA9DCPmBqzzBZHBAlIaUUpRoFU0EAWgWR0Cg6XHiNsFddX2UKGgGaAloD0MIpfRMLzGGcECUhpRSlGgVTRQBaBZHQKDpwmXw9aF1fZQoaAZoCWgPQwirdeJyvGRuQJSGlFKUaBVNOAFoFkdAoOn0IeHSGHV9lChoBmgJaA9DCNR+aydKQ3JAlIaUUpRoFU0sAWgWR0Cg6fnKfWc0dX2UKGgGaAloD0MIdzBin0CacUCUhpRSlGgVTToBaBZHQKDq4ZML4N91fZQoaAZoCWgPQwj6QzNProJwQJSGlFKUaBVL8GgWR0Cg6uX9itq6dX2UKGgGaAloD0MI3EjZImmwbkCUhpRSlGgVTRUBaBZHQKDrKmLtNSJ1fZQoaAZoCWgPQwjg2R69oZ1xQJSGlFKUaBVNFQFoFkdAoOu1w1ivxHV9lChoBmgJaA9DCDsdyHqqjnFAlIaUUpRoFUvtaBZHQKDrtfqHGjt1fZQoaAZoCWgPQwhvERjrG2VxQJSGlFKUaBVNIQFoFkdAoOvKODJ2dXV9lChoBmgJaA9DCJMbRdbaH3FAlIaUUpRoFUv8aBZHQKDsBgE2YOV1fZQoaAZoCWgPQwhPXfksjxxwQJSGlFKUaBVNDwFoFkdAoOwu05U96nV9lChoBmgJaA9DCK8I/reSvXFAlIaUUpRoFUviaBZHQKDsq42jwhJ1fZQoaAZoCWgPQwj9Z82Pf9BxQJSGlFKUaBVL7WgWR0Cg7MLnDBM0dX2UKGgGaAloD0MIzCTqBd/CcECUhpRSlGgVS/NoFkdAoO0H7N0NjXV9lChoBmgJaA9DCOHOhZFeNXJAlIaUUpRoFUv3aBZHQKDthqNZNfx1fZQoaAZoCWgPQwhIaqFkctRwQJSGlFKUaBVNEwFoFkdAoO3Ztm+TNnV9lChoBmgJaA9DCEKz696KRm5AlIaUUpRoFU0gAWgWR0Cg7eEqtozvdX2UKGgGaAloD0MIukvirIgbckCUhpRSlGgVS/9oFkdAoO4U495hSnV9lChoBmgJaA9DCH9t/fRfxXNAlIaUUpRoFU0aAWgWR0Cg7h3IuGsWdX2UKGgGaAloD0MIUrXdBJ+9cECUhpRSlGgVS/doFkdAoO6saKk2xnV9lChoBmgJaA9DCN3R/3Itm3BAlIaUUpRoFU0PAWgWR0Cg7sOOCGvfdX2UKGgGaAloD0MIIcztXu4rbUCUhpRSlGgVTQ8BaBZHQKDvIqMm4RV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 980, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f912c71a1bc633f90ba67bf66101281c5e83c301f7ea79633064761be6b3fcb1
3
+ size 198743
results.json ADDED
@@ -0,0 +1 @@
 
1
+ {"mean_reward": 269.3700367562093, "std_reward": 21.82089962124018, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-11T10:36:41.348750"}