Update README.md
Browse files
README.md
CHANGED
@@ -20,33 +20,15 @@ model-index:
|
|
20 |
- name: Rouge1
|
21 |
type: rouge
|
22 |
value: 56.4468
|
|
|
|
|
23 |
---
|
24 |
|
25 |
-
|
26 |
-
should probably proofread and complete it, then remove this comment. -->
|
27 |
-
|
28 |
-
# mt5-xl-tr-summarization
|
29 |
|
30 |
This model is a fine-tuned version of [google/mt5-xl](https://huggingface.co/google/mt5-xl) on the musabg/wikipedia-tr-summarization dataset.
|
31 |
-
It achieves the following results on the evaluation set:
|
32 |
-
- Loss: 0.5676
|
33 |
-
- Rouge1: 56.4468
|
34 |
-
- Rouge2: 41.3258
|
35 |
-
- Rougel: 48.1909
|
36 |
-
- Rougelsum: 48.4284
|
37 |
-
- Gen Len: 75.9265
|
38 |
-
|
39 |
-
## Model description
|
40 |
-
|
41 |
-
More information needed
|
42 |
-
|
43 |
-
## Intended uses & limitations
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
## Training and evaluation data
|
48 |
-
|
49 |
-
More information needed
|
50 |
|
51 |
## Training procedure
|
52 |
|
@@ -63,6 +45,16 @@ The following hyperparameters were used during training:
|
|
63 |
- lr_scheduler_type: linear
|
64 |
- num_epochs: 1.0
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
### Training results
|
67 |
|
68 |
|
@@ -72,4 +64,4 @@ The following hyperparameters were used during training:
|
|
72 |
- Transformers 4.31.0.dev0
|
73 |
- Pytorch 1.13.1
|
74 |
- Datasets 2.12.0
|
75 |
-
- Tokenizers 0.13.3
|
|
|
20 |
- name: Rouge1
|
21 |
type: rouge
|
22 |
value: 56.4468
|
23 |
+
language:
|
24 |
+
- tr
|
25 |
---
|
26 |
|
27 |
+
# mT5-Xl Turkish Summarization
|
|
|
|
|
|
|
28 |
|
29 |
This model is a fine-tuned version of [google/mt5-xl](https://huggingface.co/google/mt5-xl) on the musabg/wikipedia-tr-summarization dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
This can be used with HF summarization pipeline.
|
|
|
|
|
|
|
|
|
32 |
|
33 |
## Training procedure
|
34 |
|
|
|
45 |
- lr_scheduler_type: linear
|
46 |
- num_epochs: 1.0
|
47 |
|
48 |
+
### Eval results
|
49 |
+
|
50 |
+
It achieves the following results on the evaluation set:
|
51 |
+
- Loss: 0.5676
|
52 |
+
- Rouge1: 56.4468
|
53 |
+
- Rouge2: 41.3258
|
54 |
+
- Rougel: 48.1909
|
55 |
+
- Rougelsum: 48.4284
|
56 |
+
- Gen Len: 75.9265
|
57 |
+
|
58 |
### Training results
|
59 |
|
60 |
|
|
|
64 |
- Transformers 4.31.0.dev0
|
65 |
- Pytorch 1.13.1
|
66 |
- Datasets 2.12.0
|
67 |
+
- Tokenizers 0.13.3
|