mus-shd commited on
Commit
1bb61ea
·
1 Parent(s): 14b392e

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 290.57 +/- 17.78
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 273.11 +/- 19.91
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fac575bff70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fac575c5040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fac575c50d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fac575c5160>", "_build": "<function ActorCriticPolicy._build at 0x7fac575c51f0>", "forward": "<function ActorCriticPolicy.forward at 0x7fac575c5280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fac575c5310>", "_predict": "<function ActorCriticPolicy._predict at 0x7fac575c53a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fac575c5430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fac575c54c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fac575c5550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fac575c0450>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673366740031841751, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3zmrxP1DO8FebMOt8IxTwDbpi98vefPQAAgD8AAIA/AFWHPTFp0z5G60u+t1isvhsM+Lxpc7u9AAAAAAAAAAB6TC0++RCQPyg23T69++S+IJetPo1poz4AAAAAAAAAAJphgTsU+IS6UktWM6H+qy8I12K5To/FswAAgD8AAIA/7XwkPgtymz9rq7E+m03lviy6lz4+gTk+AAAAAAAAAADNnrA8uSkfPgUX5D1ZDsC+gmmLPlo6Xb4AAAAAAAAAAGYm/rvh3I+6hZlCMye0li88stg6pePQswAAgD8AAIA/Gu+vPfbinz5akz6+EGuvvvWAgbx6O0W9AAAAAAAAAAAz+1691jyuPshuez2HGrG+VWb4vOJrnTwAAAAAAAAAAM2cnDupAUe8dpXHvLPWdz2vBEK9doS1vAAAgD8AAIA/ZmboO+EclbqmRj44C7QbM9pFvzmFnlu3AACAPwAAgD+zMVY+99uFP6N8tD7Ofuu+7K3fPo6bVz4AAAAAAAAAAM36mz0f56Q8RHIHvhk4Ub6CC1s+32+3vwAAAAAAAAAAmpLhPHumlrrY9VE6+0E3tiAkwrr4a3K5AACAPwAAgD8Abna8cYPBP5U6nr3gzuU9N8SPvaJEKr4AAAAAAAAAACYk7727eJ09iuorvpK7175S/PC+gycOPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBMjQsUPPcECUhpRSlIwBbJRL5IwBdJRHQKm35NKyv9t1fZQoaAZoCWgPQwgJwhVQKGRvQJSGlFKUaBVL0WgWR0Cpt+U2cawVdX2UKGgGaAloD0MIGAXB49uzckCUhpRSlGgVS/BoFkdAqbg1Dpkf93V9lChoBmgJaA9DCOTXD7EBJXFAlIaUUpRoFUvsaBZHQKm4g+GGmDV1fZQoaAZoCWgPQwgracU3FCBxQJSGlFKUaBVL6WgWR0CpuNHT7VJ+dX2UKGgGaAloD0MIhCwLJv4YcUCUhpRSlGgVS+loFkdAqbjh7RfF73V9lChoBmgJaA9DCEt319kQ2HFAlIaUUpRoFUvaaBZHQKm5KcFyJbd1fZQoaAZoCWgPQwiTjQdb7CpwQJSGlFKUaBVL5GgWR0CpuT5h8YygdX2UKGgGaAloD0MIvt798V5zcECUhpRSlGgVS+FoFkdAqblkJ8fFJnV9lChoBmgJaA9DCOfCSC8qhXBAlIaUUpRoFUvxaBZHQKm5q9L6DXh1fZQoaAZoCWgPQwhtPNhit9FuQJSGlFKUaBVL3GgWR0Cpua7CBPKudX2UKGgGaAloD0MIaM9lahLccUCUhpRSlGgVS95oFkdAqbnAsmOU+3V9lChoBmgJaA9DCLlRZK1h+nFAlIaUUpRoFUv1aBZHQKm6FmXgLql1fZQoaAZoCWgPQwjp19ZPv6xyQJSGlFKUaBVL52gWR0CpuiJFkQPJdX2UKGgGaAloD0MIT83lBoOyckCUhpRSlGgVTXoBaBZHQKm6Yt+1Bt11fZQoaAZoCWgPQwiWCb/UTx5vQJSGlFKUaBVL3WgWR0CpuoonSfDldX2UKGgGaAloD0MIorPMIhRbcECUhpRSlGgVS+RoFkdAqbqfjENvwXV9lChoBmgJaA9DCLppM04DI3JAlIaUUpRoFUv4aBZHQKm7L7E5yU91fZQoaAZoCWgPQwjFc7aA0NpwQJSGlFKUaBVLz2gWR0Cpu1zXSSeRdX2UKGgGaAloD0MIM40mF2NCbUCUhpRSlGgVS/doFkdAqbuBlMAWBXV9lChoBmgJaA9DCB7C+GlcmXJAlIaUUpRoFUvmaBZHQKm7ln3+MqB1fZQoaAZoCWgPQwht409U9g9wQJSGlFKUaBVL12gWR0Cpu7cbrC3xdX2UKGgGaAloD0MIkJ4ih4hbcUCUhpRSlGgVS95oFkdAqbv99Sde6nV9lChoBmgJaA9DCFQ2rKks3nBAlIaUUpRoFUvfaBZHQKm8SRlpXZJ1fZQoaAZoCWgPQwg0ngjiPJVvQJSGlFKUaBVL5WgWR0CpvHRkEs8QdX2UKGgGaAloD0MIHQJHAg2sb0CUhpRSlGgVS+toFkdAqbx0RpUPx3V9lChoBmgJaA9DCBGmKJcGnHNAlIaUUpRoFU0TAWgWR0CpvH97OVxCdX2UKGgGaAloD0MIz/QSY1kFckCUhpRSlGgVS+xoFkdAqbzwDaGpM3V9lChoBmgJaA9DCGhZ948FE3BAlIaUUpRoFUvxaBZHQKm889+PRzB1fZQoaAZoCWgPQwh1IsFUs3RxQJSGlFKUaBVL62gWR0CpvTc1O0swdX2UKGgGaAloD0MI7Ulgc46GcECUhpRSlGgVS+FoFkdAqb09e8f3e3V9lChoBmgJaA9DCKg2OBH9BG5AlIaUUpRoFUviaBZHQKm9WBe5Wil1fZQoaAZoCWgPQwilaOVeIOtyQJSGlFKUaBVL02gWR0Cpxzspw0fpdX2UKGgGaAloD0MIi+JV1vZ9ckCUhpRSlGgVS85oFkdAqceN7IDHO3V9lChoBmgJaA9DCHMOngnNpXNAlIaUUpRoFUvzaBZHQKnHyXTmW+p1fZQoaAZoCWgPQwiMLm8O16pxQJSGlFKUaBVL7mgWR0Cpx96URnOCdX2UKGgGaAloD0MIB0FHq9rMcUCUhpRSlGgVS+doFkdAqchPHNorWnV9lChoBmgJaA9DCCuiJvo8YXFAlIaUUpRoFUvUaBZHQKnIYAlv60p1fZQoaAZoCWgPQwh6HXHIRgdwQJSGlFKUaBVNBAFoFkdAqchfAmAskXV9lChoBmgJaA9DCLq/ety3I3RAlIaUUpRoFUvgaBZHQKnIvMGorFx1fZQoaAZoCWgPQwhXk6esJpllQJSGlFKUaBVN6ANoFkdAqcjFLrX18XV9lChoBmgJaA9DCD7qr1eYQHFAlIaUUpRoFUvqaBZHQKnI0txMnJF1fZQoaAZoCWgPQwjwTj49tpJzQJSGlFKUaBVNBAFoFkdAqckne7+T/3V9lChoBmgJaA9DCGbbaWsE3nNAlIaUUpRoFUvHaBZHQKnJNVYp2EF1fZQoaAZoCWgPQwjZJaq3RrRxQJSGlFKUaBVL62gWR0CpyVWoFV1fdX2UKGgGaAloD0MI+DJRhFR1cECUhpRSlGgVTQEBaBZHQKnJlsD4gzR1fZQoaAZoCWgPQwhmvoOfuBdzQJSGlFKUaBVL8mgWR0CpyajLr5ZbdX2UKGgGaAloD0MIaOif4GIDckCUhpRSlGgVS/hoFkdAqcnSPKdQPHV9lChoBmgJaA9DCJrRj4YTfnBAlIaUUpRoFUvsaBZHQKnKEUahpQF1fZQoaAZoCWgPQwhSY0LMpQ50QJSGlFKUaBVL5WgWR0CpypTfR/mUdX2UKGgGaAloD0MIg2kYPiK8b0CUhpRSlGgVS/doFkdAqcq7M1TBInV9lChoBmgJaA9DCJzc71DUTHBAlIaUUpRoFU0LAWgWR0CpysClSCOFdX2UKGgGaAloD0MIJlZGIx/BcUCUhpRSlGgVS81oFkdAqcrL2Bas63V9lChoBmgJaA9DCEhvuI9cQm9AlIaUUpRoFUvfaBZHQKnK/vES/TN1fZQoaAZoCWgPQwjQmbSp+ipxQJSGlFKUaBVL8GgWR0Cpyx21twaSdX2UKGgGaAloD0MI2eicn+IAcECUhpRSlGgVS9xoFkdAqctJKHwgDHV9lChoBmgJaA9DCLlVEANdinBAlIaUUpRoFUvjaBZHQKnLaIcinpB1fZQoaAZoCWgPQwgnE7cKYv5xQJSGlFKUaBVL8WgWR0Cpy31qN6w/dX2UKGgGaAloD0MIsmg6O9lmckCUhpRSlGgVS9poFkdAqcuiqyWzGHV9lChoBmgJaA9DCEZB8Pi2mnBAlIaUUpRoFUvvaBZHQKnLzQJHAh11fZQoaAZoCWgPQwjzkv/J36pvQJSGlFKUaBVL42gWR0CpzBYTj/+9dX2UKGgGaAloD0MIcqd0sP6bckCUhpRSlGgVS+ZoFkdAqcwvUDuBtnV9lChoBmgJaA9DCA4yychZX3FAlIaUUpRoFUvaaBZHQKnMOhTOxB51fZQoaAZoCWgPQwhOfotO1gh0QJSGlFKUaBVNEAFoFkdAqcxP36AOKHV9lChoBmgJaA9DCJvniHzX9XBAlIaUUpRoFU0GAWgWR0CpzOnWrfcfdX2UKGgGaAloD0MIdSLBVPNwcUCUhpRSlGgVS9xoFkdAqc0lsxfv4XV9lChoBmgJaA9DCGqhZHIqiHJAlIaUUpRoFUvuaBZHQKnNK2Ifr8l1fZQoaAZoCWgPQwjjpgaajz9xQJSGlFKUaBVL7GgWR0CpzUmJFb3XdX2UKGgGaAloD0MIPiR87+8XcECUhpRSlGgVS9ZoFkdAqc1OC5EtunV9lChoBmgJaA9DCN4AM98BAHJAlIaUUpRoFU0AAWgWR0CpzYPEsJ6ZdX2UKGgGaAloD0MI3/qw3mgucUCUhpRSlGgVS9toFkdAqc3PXRPXTXV9lChoBmgJaA9DCIC3QIJiIm5AlIaUUpRoFUv/aBZHQKnN6y8BdUt1fZQoaAZoCWgPQwjtRbQdU884QJSGlFKUaBVLmGgWR0CpzfMl9jPOdX2UKGgGaAloD0MIAWpq2ZoWckCUhpRSlGgVS/xoFkdAqc4SVGCqZXV9lChoBmgJaA9DCMA+OnWlrHBAlIaUUpRoFUvYaBZHQKnONS9/SYx1fZQoaAZoCWgPQwhhjEgUmsBxQJSGlFKUaBVL+2gWR0CpzkKNAC4jdX2UKGgGaAloD0MIsyeBzXmecUCUhpRSlGgVS/toFkdAqc5kVHnU2HV9lChoBmgJaA9DCLGlR1O9qHJAlIaUUpRoFUvIaBZHQKnOiornTy91fZQoaAZoCWgPQwjvxRftMSVxQJSGlFKUaBVL4mgWR0CpzqysCDEndX2UKGgGaAloD0MIjX40nDLNbkCUhpRSlGgVS/NoFkdAqc6+anaWX3V9lChoBmgJaA9DCHJw6ZjzeHJAlIaUUpRoFUvRaBZHQKnPiZzgdfd1fZQoaAZoCWgPQwh1yw7xT1ZyQJSGlFKUaBVL9mgWR0Cpz5z5XU6QdX2UKGgGaAloD0MIXB0AcVcsb0CUhpRSlGgVS+NoFkdAqc+jHQyAQXV9lChoBmgJaA9DCO30g7pI6nJAlIaUUpRoFUv6aBZHQKnP4B6KLsN1fZQoaAZoCWgPQwghj+BGCndxQJSGlFKUaBVL/mgWR0Cp0BDDsMRZdX2UKGgGaAloD0MIscOY9PeNckCUhpRSlGgVS79oFkdAqdAd61LJ0XV9lChoBmgJaA9DCDs0LEbdP3FAlIaUUpRoFUvtaBZHQKnQHZ26kIp1fZQoaAZoCWgPQwg9fQT+sENyQJSGlFKUaBVL2GgWR0Cp0CdZzPrwdX2UKGgGaAloD0MI3iBaK5oBckCUhpRSlGgVS9RoFkdAqdA5xtHhCXV9lChoBmgJaA9DCH1aRX9oLnJAlIaUUpRoFU0AAWgWR0Cp0KaK1og3dX2UKGgGaAloD0MIMbJkjmWlbkCUhpRSlGgVS+ZoFkdAqdC0/fO2RnV9lChoBmgJaA9DCLtE9daA/XFAlIaUUpRoFUvtaBZHQKnQu4oZydZ1fZQoaAZoCWgPQwgei21S0TZyQJSGlFKUaBVL4WgWR0Cp0Mwb2lEadX2UKGgGaAloD0MI6Zyf4nhdc0CUhpRSlGgVS91oFkdAqdDneFcps3V9lChoBmgJaA9DCC47xD/s43JAlIaUUpRoFUvNaBZHQKnQ8wxFiKB1fZQoaAZoCWgPQwjYKOs3k4NvQJSGlFKUaBVL8GgWR0Cp0TNz0Yj0dX2UKGgGaAloD0MIotKImf3Xb0CUhpRSlGgVS9loFkdAqdHy3d9DyHV9lChoBmgJaA9DCISdYtWgdXNAlIaUUpRoFUvgaBZHQKnR91mJ3xF1fZQoaAZoCWgPQwgG9phIqZ1zQJSGlFKUaBVL4WgWR0Cp0hCA2AG0dX2UKGgGaAloD0MIGeWZl0ObcUCUhpRSlGgVS9loFkdAqdI2p0fYBnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 740, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ee3cf585b40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ee3cf585bd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ee3cf585c60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ee3cf585cf0>", "_build": "<function ActorCriticPolicy._build at 0x7ee3cf585d80>", "forward": "<function ActorCriticPolicy.forward at 0x7ee3cf585e10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ee3cf585ea0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ee3cf585f30>", "_predict": "<function ActorCriticPolicy._predict at 0x7ee3cf585fc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ee3cf586050>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ee3cf5860e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ee3cf586170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ee3cf51ef00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1703960953529547806, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbPCb0pxjE7AusDPilair740xO9+GVZPQAAAAAAAAAAzdxwOySXuD9qcV497KBlPiQz3Tt2wsk9AAAAAAAAAAAAzLe7H136uRvN6jirzEUz7TbQuXqrCLgAAIA/AACAP2aepzv2g3m8FU73Pb0JIT26KNe9bcP8PQAAgD8AAIA/gPcXvUgXmroQqZ27uRFMONtFvDpjFg85AAAAAAAAgD8NcJs94nGvPyLxnj41Db6+SJ8EPtXBKj4AAAAAAAAAAJpVHDx7wqG8GAXvvEfiIbxEM+s9wfEqPgAAgD8AAIA/WhucPcvIBj8besO9y5nAvkmEIT1bM1S9AAAAAAAAAABzqoK92xfBPsDi/D1hpb2+CccRvUIqkT0AAAAAAAAAAE26IL3Qxw8//0QFPkw4674dcxY7qUevPQAAAAAAAAAAzWJdPTNEHT+juUG8dCjDvgdVTT3Fvps7AAAAAAAAAAAzvxk8GJfiPs6xq728Y9q+tMozvGDgwzwAAAAAAAAAADMAhD0FO+S7zg2YPISq8Dys6Ry8iz1rOQAAgD8AAIA/M6+9PQ96rj/1gbg+9rvKvoQGFj7yFEs+AAAAAAAAAACt+GW+L/pxP2LEB74ibR2/OAeTvm4r3T0AAAAAAAAAAObRfr1gQKo/nTSEvqNt6b6v1B6+kG/YvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDGKRp1zQyMAWyUS+aMAXSUR0CghSAiNbTudX2UKGgGR0Bw/IQCjk+5aAdL9mgIR0CghX9QXQ+mdX2UKGgGR0BxQ+9Ba9saaAdL3GgIR0CghbjZDiOvdX2UKGgGR0BzKPujRD1HaAdL7GgIR0CghciyIHkcdX2UKGgGR0BPLbLlmvnsaAdLm2gIR0Cghgy3solVdX2UKGgGR0Bxy7E/B3zMaAdL0mgIR0CghhNvn8sMdX2UKGgGR0BzfOPsAvL6aAdL9mgIR0CghiGPYFq0dX2UKGgGR0BzKDWiDdxiaAdL/WgIR0CghmgeaKDTdX2UKGgGR0Bx8tCLMs6JaAdL0WgIR0Cghr0+cH4XdX2UKGgGR0BySGyUs4DLaAdL0mgIR0CghsQNkOI7dX2UKGgGR0ByPBKNAC4jaAdL7WgIR0CghzZgPVd5dX2UKGgGR0BxIdGe+VTraAdLxWgIR0Cgh0cdYGMXdX2UKGgGR0BvRS0IC2c8aAdL4WgIR0Cgh7HMt9QXdX2UKGgGR0Bv8WlVLi++aAdL1WgIR0Cgh8tkFwDOdX2UKGgGR0BxsIlfJFLGaAdL12gIR0Cgh+I2GZeBdX2UKGgGR0Bz74E2YOUdaAdLz2gIR0CgiEtBOYY0dX2UKGgGR0Bw1Jpudf9haAdLzWgIR0CgiJMsQNCrdX2UKGgGR0BySrDWK/EgaAdNCgFoCEdAoIioztTkyXV9lChoBkdAcgr9ZA6dUmgHS9FoCEdAoIko6dUbUHV9lChoBkdAcmPhJyyUtGgHS/hoCEdAoIl0ZeiSJXV9lChoBkdAcX55tFa0QmgHS+hoCEdAoImI6ZH/cXV9lChoBkdAcJNpgCwKSmgHS+VoCEdAoImXXGwRoXV9lChoBkdAYriCV8kUsWgHTegDaAhHQKCJtZOBUaR1fZQoaAZHQHBxaGcnVoZoB0vYaAhHQKCJwpF1B+p1fZQoaAZHQG+K4AS39aVoB0vUaAhHQKCKGF8ohIR1fZQoaAZHQHJN2V3Ux21oB0veaAhHQKCKM65oXbd1fZQoaAZHQHEMhM36yjZoB0vgaAhHQKCK1g3Lmp51fZQoaAZHQHHoYrvsqrloB0vvaAhHQKCK/mcvugJ1fZQoaAZHQHBi0jgQ6IZoB0vUaAhHQKCUI1MM7U51fZQoaAZHQG+392HLzPNoB0v1aAhHQKCUcogFHJ91fZQoaAZHQHKpqhtcfNloB00FAWgIR0CglI0kv9LpdX2UKGgGR0BuTAIyCWeIaAdL42gIR0CglJKjrRjSdX2UKGgGR0Bx5s2jwhGIaAdL2WgIR0CglKBLXcxkdX2UKGgGR0ByZ7e40/GEaAdL1WgIR0CglKDi4rjHdX2UKGgGR0BwZQHObAk+aAdL2GgIR0CglSNWEK3NdX2UKGgGR0BxlNIYm9g4aAdL32gIR0CglUajvd/KdX2UKGgGR0BxeS1XvH94aAdL5mgIR0CglWhxgiNbdX2UKGgGR0Bxk7apPykLaAdNBAFoCEdAoJV4mG/N7nV9lChoBkdAc8TJo0ygw2gHS+hoCEdAoJWCr92ovXV9lChoBkdAcuMDEFW4mWgHS+9oCEdAoJWdM495hXV9lChoBkdAc0aHTZxrBWgHS9ZoCEdAoJWePmxMWXV9lChoBkdAcqfinHeaa2gHS91oCEdAoJXC68QI2XV9lChoBkdAcNssYEW69WgHS9BoCEdAoJZ2luWKM3V9lChoBkdAcgb3R5TqB2gHS+loCEdAoJZ+VPepGXV9lChoBkdAcf0YBNmDlGgHS/5oCEdAoJaiKk2xZHV9lChoBkdAcWgD/lyR0WgHS9JoCEdAoJbO3KB/Z3V9lChoBkdAcaE1yeZof2gHS91oCEdAoJcHnnuAqnV9lChoBkdAc5ppON5t32gHS/RoCEdAoJdNmOEM9nV9lChoBkdAcRrigCfYjGgHS/RoCEdAoJdb1TR6W3V9lChoBkdAcu7uMMqjJ2gHS/xoCEdAoJd1CeEqUnV9lChoBkdAcnoR1HOKO2gHS9doCEdAoJeOLgn+h3V9lChoBkdAcDbZB9kSVWgHS9VoCEdAoJfEH6dlNHV9lChoBkdAcqsttygf2mgHS99oCEdAoJfCiyprDnV9lChoBkdAc3cCKaXrt2gHS9RoCEdAoJfbnV5KOHV9lChoBkdAcZ2pLEk0JmgHS+FoCEdAoJfyj59E1HV9lChoBkdAca1Puogmq2gHS+toCEdAoJgyH6/IsHV9lChoBkdAc6Eay8jAz2gHS+5oCEdAoJg6+SKWLXV9lChoBkdAcDvEofCAMGgHS+FoCEdAoJhBWvKU3XV9lChoBkdAb6NNBWxQi2gHS9ZoCEdAoJjJmVZ9u3V9lChoBkdAcCcTP0I1L2gHS8toCEdAoJjQQUYbbXV9lChoBkdAcmZyZrpJPWgHS/doCEdAoJkwdKdxyXV9lChoBkdAcgInOB19v2gHS+RoCEdAoJlGUUwi7nV9lChoBkdAcZn0Yj0L+mgHS9doCEdAoJlZeXzDoHV9lChoBkdAcTu4mCyyEGgHS8doCEdAoJlxlDneSHV9lChoBkdAcCbPLxI8Q2gHS81oCEdAoJmmrGR3eXV9lChoBkdAbveOpbUwz2gHS9loCEdAoJmxi1Aqu3V9lChoBkdAcw8f029+PWgHS9ZoCEdAoJoQt6HCXXV9lChoBkdAchlCSA6Mi2gHS8doCEdAoJoZew9q13V9lChoBkdAcBJkiliz9mgHS9toCEdAoJohntfG/HV9lChoBkdAcqnWw/xDs2gHS9xoCEdAoJo5v99+gHV9lChoBkdAcLl4RVZLZmgHS/poCEdAoJo9KEnLJXV9lChoBkdAcIoYODrZ8WgHS8hoCEdAoJpjpzLfUHV9lChoBkdAbqe47Rv3rWgHS99oCEdAoJqVAqur63V9lChoBkdAb7drl/6O52gHS/FoCEdAoJrS42CNCXV9lChoBkdAVDwPatcOb2gHS6RoCEdAoJso7/4qPXV9lChoBkdAbGxFCLMs6WgHS+1oCEdAoJtT7wazeHV9lChoBkdAcigSHM2WIGgHS/FoCEdAoJtl9+gDinV9lChoBkdActjcMmWt2mgHS9BoCEdAoJtl+Vkc0nV9lChoBkdAcEcs1sLv1GgHS+JoCEdAoJuvxH5JsnV9lChoBkdAchN2wmmcfGgHS8VoCEdAoJvLb5/LDHV9lChoBkdAcMM9AX2ugmgHS/loCEdAoJxl0gbIcXV9lChoBkdAcVZGhVU+92gHS9toCEdAoJyBl18stnV9lChoBkdAbkGyQgcLjWgHS9hoCEdAoJyCAhB7eHV9lChoBkdAbueaR6nivWgHS9ZoCEdAoJyl58jRlnV9lChoBkdAcmO3/xUedWgHS+doCEdAoJy5PAO8TXV9lChoBkdAcHSivPkaM2gHS/5oCEdAoJ0dBQemvXV9lChoBkdAcC/LbHp8nmgHS+BoCEdAoJ0x2St/4XV9lChoBkdAcOk7UXpGF2gHS9FoCEdAoJ1K8an753V9lChoBkdAcsJcHnlny2gHTQABaAhHQKCdVd+G47R1fZQoaAZHQHCF6LjxTbZoB0vdaAhHQKCd01l5GBp1fZQoaAZHQFEUPjXFtKtoB0uNaAhHQKCeIn752yN1fZQoaAZHQHH4kKu0TlFoB0vlaAhHQKCeIgK4QSV1fZQoaAZHQHGCisny/bloB0vsaAhHQKCeS47zTWp1fZQoaAZHQHH8JtFa0QdoB0v2aAhHQKCeao5PuXx1fZQoaAZHQHFNu3x4IKNoB0vnaAhHQKCehtG/etV1fZQoaAZHQHMoHCfpUxVoB0vzaAhHQKCeyD4gzP91fZQoaAZHQHFC2pAD7qJoB0vTaAhHQKCfQYu01Il1fZQoaAZHQHIX6ptJnQJoB0veaAhHQKCfQWOZLIx1fZQoaAZHQHLnhtgrpaBoB0vgaAhHQKCfSCo0hvB1fZQoaAZHQG8BfFirksBoB0vhaAhHQKCfgkVN5+p1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4ef4846fe1c7c2535c77a4289aea8d7521d0e9131bc8fe7a3a54a637d911be8c
3
- size 147102
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad886880f143238e38fa5642afbfe6977945d4fc11b5d8cb03f26196db04092d
3
+ size 147944
ppo-LunarLander-v2/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 1.6.2
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data CHANGED
@@ -3,60 +3,35 @@
3
  ":type:": "<class 'abc.ABCMeta'>",
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
- "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fac575bff70>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fac575c5040>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fac575c50d0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fac575c5160>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fac575c51f0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fac575c5280>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fac575c5310>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7fac575c53a0>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fac575c5430>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fac575c54c0>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fac575c5550>",
 
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7fac575c0450>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
23
- "observation_space": {
24
- ":type:": "<class 'gym.spaces.box.Box'>",
25
- ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
- "dtype": "float32",
27
- "_shape": [
28
- 8
29
- ],
30
- "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
- "high": "[inf inf inf inf inf inf inf inf]",
32
- "bounded_below": "[False False False False False False False False]",
33
- "bounded_above": "[False False False False False False False False]",
34
- "_np_random": null
35
- },
36
- "action_space": {
37
- ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
- ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
- "n": 4,
40
- "_shape": [],
41
- "dtype": "int64",
42
- "_np_random": null
43
- },
44
- "n_envs": 16,
45
  "num_timesteps": 2015232,
46
  "_total_timesteps": 2000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1673366740031841751,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
- "lr_schedule": {
54
- ":type:": "<class 'function'>",
55
- ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
- },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3zmrxP1DO8FebMOt8IxTwDbpi98vefPQAAgD8AAIA/AFWHPTFp0z5G60u+t1isvhsM+Lxpc7u9AAAAAAAAAAB6TC0++RCQPyg23T69++S+IJetPo1poz4AAAAAAAAAAJphgTsU+IS6UktWM6H+qy8I12K5To/FswAAgD8AAIA/7XwkPgtymz9rq7E+m03lviy6lz4+gTk+AAAAAAAAAADNnrA8uSkfPgUX5D1ZDsC+gmmLPlo6Xb4AAAAAAAAAAGYm/rvh3I+6hZlCMye0li88stg6pePQswAAgD8AAIA/Gu+vPfbinz5akz6+EGuvvvWAgbx6O0W9AAAAAAAAAAAz+1691jyuPshuez2HGrG+VWb4vOJrnTwAAAAAAAAAAM2cnDupAUe8dpXHvLPWdz2vBEK9doS1vAAAgD8AAIA/ZmboO+EclbqmRj44C7QbM9pFvzmFnlu3AACAPwAAgD+zMVY+99uFP6N8tD7Ofuu+7K3fPo6bVz4AAAAAAAAAAM36mz0f56Q8RHIHvhk4Ub6CC1s+32+3vwAAAAAAAAAAmpLhPHumlrrY9VE6+0E3tiAkwrr4a3K5AACAPwAAgD8Abna8cYPBP5U6nr3gzuU9N8SPvaJEKr4AAAAAAAAAACYk7727eJ09iuorvpK7175S/PC+gycOPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
@@ -67,15 +42,41 @@
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
  "_current_progress_remaining": -0.007616000000000067,
 
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVKBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBMjQsUPPcECUhpRSlIwBbJRL5IwBdJRHQKm35NKyv9t1fZQoaAZoCWgPQwgJwhVQKGRvQJSGlFKUaBVL0WgWR0Cpt+U2cawVdX2UKGgGaAloD0MIGAXB49uzckCUhpRSlGgVS/BoFkdAqbg1Dpkf93V9lChoBmgJaA9DCOTXD7EBJXFAlIaUUpRoFUvsaBZHQKm4g+GGmDV1fZQoaAZoCWgPQwgracU3FCBxQJSGlFKUaBVL6WgWR0CpuNHT7VJ+dX2UKGgGaAloD0MIhCwLJv4YcUCUhpRSlGgVS+loFkdAqbjh7RfF73V9lChoBmgJaA9DCEt319kQ2HFAlIaUUpRoFUvaaBZHQKm5KcFyJbd1fZQoaAZoCWgPQwiTjQdb7CpwQJSGlFKUaBVL5GgWR0CpuT5h8YygdX2UKGgGaAloD0MIvt798V5zcECUhpRSlGgVS+FoFkdAqblkJ8fFJnV9lChoBmgJaA9DCOfCSC8qhXBAlIaUUpRoFUvxaBZHQKm5q9L6DXh1fZQoaAZoCWgPQwhtPNhit9FuQJSGlFKUaBVL3GgWR0Cpua7CBPKudX2UKGgGaAloD0MIaM9lahLccUCUhpRSlGgVS95oFkdAqbnAsmOU+3V9lChoBmgJaA9DCLlRZK1h+nFAlIaUUpRoFUv1aBZHQKm6FmXgLql1fZQoaAZoCWgPQwjp19ZPv6xyQJSGlFKUaBVL52gWR0CpuiJFkQPJdX2UKGgGaAloD0MIT83lBoOyckCUhpRSlGgVTXoBaBZHQKm6Yt+1Bt11fZQoaAZoCWgPQwiWCb/UTx5vQJSGlFKUaBVL3WgWR0CpuoonSfDldX2UKGgGaAloD0MIorPMIhRbcECUhpRSlGgVS+RoFkdAqbqfjENvwXV9lChoBmgJaA9DCLppM04DI3JAlIaUUpRoFUv4aBZHQKm7L7E5yU91fZQoaAZoCWgPQwjFc7aA0NpwQJSGlFKUaBVLz2gWR0Cpu1zXSSeRdX2UKGgGaAloD0MIM40mF2NCbUCUhpRSlGgVS/doFkdAqbuBlMAWBXV9lChoBmgJaA9DCB7C+GlcmXJAlIaUUpRoFUvmaBZHQKm7ln3+MqB1fZQoaAZoCWgPQwht409U9g9wQJSGlFKUaBVL12gWR0Cpu7cbrC3xdX2UKGgGaAloD0MIkJ4ih4hbcUCUhpRSlGgVS95oFkdAqbv99Sde6nV9lChoBmgJaA9DCFQ2rKks3nBAlIaUUpRoFUvfaBZHQKm8SRlpXZJ1fZQoaAZoCWgPQwg0ngjiPJVvQJSGlFKUaBVL5WgWR0CpvHRkEs8QdX2UKGgGaAloD0MIHQJHAg2sb0CUhpRSlGgVS+toFkdAqbx0RpUPx3V9lChoBmgJaA9DCBGmKJcGnHNAlIaUUpRoFU0TAWgWR0CpvH97OVxCdX2UKGgGaAloD0MIz/QSY1kFckCUhpRSlGgVS+xoFkdAqbzwDaGpM3V9lChoBmgJaA9DCGhZ948FE3BAlIaUUpRoFUvxaBZHQKm889+PRzB1fZQoaAZoCWgPQwh1IsFUs3RxQJSGlFKUaBVL62gWR0CpvTc1O0swdX2UKGgGaAloD0MI7Ulgc46GcECUhpRSlGgVS+FoFkdAqb09e8f3e3V9lChoBmgJaA9DCKg2OBH9BG5AlIaUUpRoFUviaBZHQKm9WBe5Wil1fZQoaAZoCWgPQwilaOVeIOtyQJSGlFKUaBVL02gWR0Cpxzspw0fpdX2UKGgGaAloD0MIi+JV1vZ9ckCUhpRSlGgVS85oFkdAqceN7IDHO3V9lChoBmgJaA9DCHMOngnNpXNAlIaUUpRoFUvzaBZHQKnHyXTmW+p1fZQoaAZoCWgPQwiMLm8O16pxQJSGlFKUaBVL7mgWR0Cpx96URnOCdX2UKGgGaAloD0MIB0FHq9rMcUCUhpRSlGgVS+doFkdAqchPHNorWnV9lChoBmgJaA9DCCuiJvo8YXFAlIaUUpRoFUvUaBZHQKnIYAlv60p1fZQoaAZoCWgPQwh6HXHIRgdwQJSGlFKUaBVNBAFoFkdAqchfAmAskXV9lChoBmgJaA9DCLq/ety3I3RAlIaUUpRoFUvgaBZHQKnIvMGorFx1fZQoaAZoCWgPQwhXk6esJpllQJSGlFKUaBVN6ANoFkdAqcjFLrX18XV9lChoBmgJaA9DCD7qr1eYQHFAlIaUUpRoFUvqaBZHQKnI0txMnJF1fZQoaAZoCWgPQwjwTj49tpJzQJSGlFKUaBVNBAFoFkdAqckne7+T/3V9lChoBmgJaA9DCGbbaWsE3nNAlIaUUpRoFUvHaBZHQKnJNVYp2EF1fZQoaAZoCWgPQwjZJaq3RrRxQJSGlFKUaBVL62gWR0CpyVWoFV1fdX2UKGgGaAloD0MI+DJRhFR1cECUhpRSlGgVTQEBaBZHQKnJlsD4gzR1fZQoaAZoCWgPQwhmvoOfuBdzQJSGlFKUaBVL8mgWR0CpyajLr5ZbdX2UKGgGaAloD0MIaOif4GIDckCUhpRSlGgVS/hoFkdAqcnSPKdQPHV9lChoBmgJaA9DCJrRj4YTfnBAlIaUUpRoFUvsaBZHQKnKEUahpQF1fZQoaAZoCWgPQwhSY0LMpQ50QJSGlFKUaBVL5WgWR0CpypTfR/mUdX2UKGgGaAloD0MIg2kYPiK8b0CUhpRSlGgVS/doFkdAqcq7M1TBInV9lChoBmgJaA9DCJzc71DUTHBAlIaUUpRoFU0LAWgWR0CpysClSCOFdX2UKGgGaAloD0MIJlZGIx/BcUCUhpRSlGgVS81oFkdAqcrL2Bas63V9lChoBmgJaA9DCEhvuI9cQm9AlIaUUpRoFUvfaBZHQKnK/vES/TN1fZQoaAZoCWgPQwjQmbSp+ipxQJSGlFKUaBVL8GgWR0Cpyx21twaSdX2UKGgGaAloD0MI2eicn+IAcECUhpRSlGgVS9xoFkdAqctJKHwgDHV9lChoBmgJaA9DCLlVEANdinBAlIaUUpRoFUvjaBZHQKnLaIcinpB1fZQoaAZoCWgPQwgnE7cKYv5xQJSGlFKUaBVL8WgWR0Cpy31qN6w/dX2UKGgGaAloD0MIsmg6O9lmckCUhpRSlGgVS9poFkdAqcuiqyWzGHV9lChoBmgJaA9DCEZB8Pi2mnBAlIaUUpRoFUvvaBZHQKnLzQJHAh11fZQoaAZoCWgPQwjzkv/J36pvQJSGlFKUaBVL42gWR0CpzBYTj/+9dX2UKGgGaAloD0MIcqd0sP6bckCUhpRSlGgVS+ZoFkdAqcwvUDuBtnV9lChoBmgJaA9DCA4yychZX3FAlIaUUpRoFUvaaBZHQKnMOhTOxB51fZQoaAZoCWgPQwhOfotO1gh0QJSGlFKUaBVNEAFoFkdAqcxP36AOKHV9lChoBmgJaA9DCJvniHzX9XBAlIaUUpRoFU0GAWgWR0CpzOnWrfcfdX2UKGgGaAloD0MIdSLBVPNwcUCUhpRSlGgVS9xoFkdAqc0lsxfv4XV9lChoBmgJaA9DCGqhZHIqiHJAlIaUUpRoFUvuaBZHQKnNK2Ifr8l1fZQoaAZoCWgPQwjjpgaajz9xQJSGlFKUaBVL7GgWR0CpzUmJFb3XdX2UKGgGaAloD0MIPiR87+8XcECUhpRSlGgVS9ZoFkdAqc1OC5EtunV9lChoBmgJaA9DCN4AM98BAHJAlIaUUpRoFU0AAWgWR0CpzYPEsJ6ZdX2UKGgGaAloD0MI3/qw3mgucUCUhpRSlGgVS9toFkdAqc3PXRPXTXV9lChoBmgJaA9DCIC3QIJiIm5AlIaUUpRoFUv/aBZHQKnN6y8BdUt1fZQoaAZoCWgPQwjtRbQdU884QJSGlFKUaBVLmGgWR0CpzfMl9jPOdX2UKGgGaAloD0MIAWpq2ZoWckCUhpRSlGgVS/xoFkdAqc4SVGCqZXV9lChoBmgJaA9DCMA+OnWlrHBAlIaUUpRoFUvYaBZHQKnONS9/SYx1fZQoaAZoCWgPQwhhjEgUmsBxQJSGlFKUaBVL+2gWR0CpzkKNAC4jdX2UKGgGaAloD0MIsyeBzXmecUCUhpRSlGgVS/toFkdAqc5kVHnU2HV9lChoBmgJaA9DCLGlR1O9qHJAlIaUUpRoFUvIaBZHQKnOiornTy91fZQoaAZoCWgPQwjvxRftMSVxQJSGlFKUaBVL4mgWR0CpzqysCDEndX2UKGgGaAloD0MIjX40nDLNbkCUhpRSlGgVS/NoFkdAqc6+anaWX3V9lChoBmgJaA9DCHJw6ZjzeHJAlIaUUpRoFUvRaBZHQKnPiZzgdfd1fZQoaAZoCWgPQwh1yw7xT1ZyQJSGlFKUaBVL9mgWR0Cpz5z5XU6QdX2UKGgGaAloD0MIXB0AcVcsb0CUhpRSlGgVS+NoFkdAqc+jHQyAQXV9lChoBmgJaA9DCO30g7pI6nJAlIaUUpRoFUv6aBZHQKnP4B6KLsN1fZQoaAZoCWgPQwghj+BGCndxQJSGlFKUaBVL/mgWR0Cp0BDDsMRZdX2UKGgGaAloD0MIscOY9PeNckCUhpRSlGgVS79oFkdAqdAd61LJ0XV9lChoBmgJaA9DCDs0LEbdP3FAlIaUUpRoFUvtaBZHQKnQHZ26kIp1fZQoaAZoCWgPQwg9fQT+sENyQJSGlFKUaBVL2GgWR0Cp0CdZzPrwdX2UKGgGaAloD0MI3iBaK5oBckCUhpRSlGgVS9RoFkdAqdA5xtHhCXV9lChoBmgJaA9DCH1aRX9oLnJAlIaUUpRoFU0AAWgWR0Cp0KaK1og3dX2UKGgGaAloD0MIMbJkjmWlbkCUhpRSlGgVS+ZoFkdAqdC0/fO2RnV9lChoBmgJaA9DCLtE9daA/XFAlIaUUpRoFUvtaBZHQKnQu4oZydZ1fZQoaAZoCWgPQwgei21S0TZyQJSGlFKUaBVL4WgWR0Cp0Mwb2lEadX2UKGgGaAloD0MI6Zyf4nhdc0CUhpRSlGgVS91oFkdAqdDneFcps3V9lChoBmgJaA9DCC47xD/s43JAlIaUUpRoFUvNaBZHQKnQ8wxFiKB1fZQoaAZoCWgPQwjYKOs3k4NvQJSGlFKUaBVL8GgWR0Cp0TNz0Yj0dX2UKGgGaAloD0MIotKImf3Xb0CUhpRSlGgVS9loFkdAqdHy3d9DyHV9lChoBmgJaA9DCISdYtWgdXNAlIaUUpRoFUvgaBZHQKnR91mJ3xF1fZQoaAZoCWgPQwgG9phIqZ1zQJSGlFKUaBVL4WgWR0Cp0hCA2AG0dX2UKGgGaAloD0MIGeWZl0ObcUCUhpRSlGgVS9loFkdAqdI2p0fYBnVlLg=="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 740,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
@@ -86,9 +87,13 @@
86
  "n_epochs": 4,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
- ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
  },
91
  "clip_range_vf": null,
92
  "normalize_advantage": true,
93
- "target_kl": null
 
 
 
 
94
  }
 
3
  ":type:": "<class 'abc.ABCMeta'>",
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ee3cf585b40>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ee3cf585bd0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ee3cf585c60>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ee3cf585cf0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ee3cf585d80>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ee3cf585e10>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ee3cf585ea0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ee3cf585f30>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ee3cf585fc0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ee3cf586050>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ee3cf5860e0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ee3cf586170>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7ee3cf51ef00>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  "num_timesteps": 2015232,
25
  "_total_timesteps": 2000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1703960953529547806,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
 
 
 
 
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbPCb0pxjE7AusDPilair740xO9+GVZPQAAAAAAAAAAzdxwOySXuD9qcV497KBlPiQz3Tt2wsk9AAAAAAAAAAAAzLe7H136uRvN6jirzEUz7TbQuXqrCLgAAIA/AACAP2aepzv2g3m8FU73Pb0JIT26KNe9bcP8PQAAgD8AAIA/gPcXvUgXmroQqZ27uRFMONtFvDpjFg85AAAAAAAAgD8NcJs94nGvPyLxnj41Db6+SJ8EPtXBKj4AAAAAAAAAAJpVHDx7wqG8GAXvvEfiIbxEM+s9wfEqPgAAgD8AAIA/WhucPcvIBj8besO9y5nAvkmEIT1bM1S9AAAAAAAAAABzqoK92xfBPsDi/D1hpb2+CccRvUIqkT0AAAAAAAAAAE26IL3Qxw8//0QFPkw4674dcxY7qUevPQAAAAAAAAAAzWJdPTNEHT+juUG8dCjDvgdVTT3Fvps7AAAAAAAAAAAzvxk8GJfiPs6xq728Y9q+tMozvGDgwzwAAAAAAAAAADMAhD0FO+S7zg2YPISq8Dys6Ry8iz1rOQAAgD8AAIA/M6+9PQ96rj/1gbg+9rvKvoQGFj7yFEs+AAAAAAAAAACt+GW+L/pxP2LEB74ibR2/OAeTvm4r3T0AAAAAAAAAAObRfr1gQKo/nTSEvqNt6b6v1B6+kG/YvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
  "_current_progress_remaining": -0.007616000000000067,
45
+ "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV5QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDGKRp1zQyMAWyUS+aMAXSUR0CghSAiNbTudX2UKGgGR0Bw/IQCjk+5aAdL9mgIR0CghX9QXQ+mdX2UKGgGR0BxQ+9Ba9saaAdL3GgIR0CghbjZDiOvdX2UKGgGR0BzKPujRD1HaAdL7GgIR0CghciyIHkcdX2UKGgGR0BPLbLlmvnsaAdLm2gIR0Cghgy3solVdX2UKGgGR0Bxy7E/B3zMaAdL0mgIR0CghhNvn8sMdX2UKGgGR0BzfOPsAvL6aAdL9mgIR0CghiGPYFq0dX2UKGgGR0BzKDWiDdxiaAdL/WgIR0CghmgeaKDTdX2UKGgGR0Bx8tCLMs6JaAdL0WgIR0Cghr0+cH4XdX2UKGgGR0BySGyUs4DLaAdL0mgIR0CghsQNkOI7dX2UKGgGR0ByPBKNAC4jaAdL7WgIR0CghzZgPVd5dX2UKGgGR0BxIdGe+VTraAdLxWgIR0Cgh0cdYGMXdX2UKGgGR0BvRS0IC2c8aAdL4WgIR0Cgh7HMt9QXdX2UKGgGR0Bv8WlVLi++aAdL1WgIR0Cgh8tkFwDOdX2UKGgGR0BxsIlfJFLGaAdL12gIR0Cgh+I2GZeBdX2UKGgGR0Bz74E2YOUdaAdLz2gIR0CgiEtBOYY0dX2UKGgGR0Bw1Jpudf9haAdLzWgIR0CgiJMsQNCrdX2UKGgGR0BySrDWK/EgaAdNCgFoCEdAoIioztTkyXV9lChoBkdAcgr9ZA6dUmgHS9FoCEdAoIko6dUbUHV9lChoBkdAcmPhJyyUtGgHS/hoCEdAoIl0ZeiSJXV9lChoBkdAcX55tFa0QmgHS+hoCEdAoImI6ZH/cXV9lChoBkdAcJNpgCwKSmgHS+VoCEdAoImXXGwRoXV9lChoBkdAYriCV8kUsWgHTegDaAhHQKCJtZOBUaR1fZQoaAZHQHBxaGcnVoZoB0vYaAhHQKCJwpF1B+p1fZQoaAZHQG+K4AS39aVoB0vUaAhHQKCKGF8ohIR1fZQoaAZHQHJN2V3Ux21oB0veaAhHQKCKM65oXbd1fZQoaAZHQHEMhM36yjZoB0vgaAhHQKCK1g3Lmp51fZQoaAZHQHHoYrvsqrloB0vvaAhHQKCK/mcvugJ1fZQoaAZHQHBi0jgQ6IZoB0vUaAhHQKCUI1MM7U51fZQoaAZHQG+392HLzPNoB0v1aAhHQKCUcogFHJ91fZQoaAZHQHKpqhtcfNloB00FAWgIR0CglI0kv9LpdX2UKGgGR0BuTAIyCWeIaAdL42gIR0CglJKjrRjSdX2UKGgGR0Bx5s2jwhGIaAdL2WgIR0CglKBLXcxkdX2UKGgGR0ByZ7e40/GEaAdL1WgIR0CglKDi4rjHdX2UKGgGR0BwZQHObAk+aAdL2GgIR0CglSNWEK3NdX2UKGgGR0BxlNIYm9g4aAdL32gIR0CglUajvd/KdX2UKGgGR0BxeS1XvH94aAdL5mgIR0CglWhxgiNbdX2UKGgGR0Bxk7apPykLaAdNBAFoCEdAoJV4mG/N7nV9lChoBkdAc8TJo0ygw2gHS+hoCEdAoJWCr92ovXV9lChoBkdAcuMDEFW4mWgHS+9oCEdAoJWdM495hXV9lChoBkdAc0aHTZxrBWgHS9ZoCEdAoJWePmxMWXV9lChoBkdAcqfinHeaa2gHS91oCEdAoJXC68QI2XV9lChoBkdAcNssYEW69WgHS9BoCEdAoJZ2luWKM3V9lChoBkdAcgb3R5TqB2gHS+loCEdAoJZ+VPepGXV9lChoBkdAcf0YBNmDlGgHS/5oCEdAoJaiKk2xZHV9lChoBkdAcWgD/lyR0WgHS9JoCEdAoJbO3KB/Z3V9lChoBkdAcaE1yeZof2gHS91oCEdAoJcHnnuAqnV9lChoBkdAc5ppON5t32gHS/RoCEdAoJdNmOEM9nV9lChoBkdAcRrigCfYjGgHS/RoCEdAoJdb1TR6W3V9lChoBkdAcu7uMMqjJ2gHS/xoCEdAoJd1CeEqUnV9lChoBkdAcnoR1HOKO2gHS9doCEdAoJeOLgn+h3V9lChoBkdAcDbZB9kSVWgHS9VoCEdAoJfEH6dlNHV9lChoBkdAcqsttygf2mgHS99oCEdAoJfCiyprDnV9lChoBkdAc3cCKaXrt2gHS9RoCEdAoJfbnV5KOHV9lChoBkdAcZ2pLEk0JmgHS+FoCEdAoJfyj59E1HV9lChoBkdAca1Puogmq2gHS+toCEdAoJgyH6/IsHV9lChoBkdAc6Eay8jAz2gHS+5oCEdAoJg6+SKWLXV9lChoBkdAcDvEofCAMGgHS+FoCEdAoJhBWvKU3XV9lChoBkdAb6NNBWxQi2gHS9ZoCEdAoJjJmVZ9u3V9lChoBkdAcCcTP0I1L2gHS8toCEdAoJjQQUYbbXV9lChoBkdAcmZyZrpJPWgHS/doCEdAoJkwdKdxyXV9lChoBkdAcgInOB19v2gHS+RoCEdAoJlGUUwi7nV9lChoBkdAcZn0Yj0L+mgHS9doCEdAoJlZeXzDoHV9lChoBkdAcTu4mCyyEGgHS8doCEdAoJlxlDneSHV9lChoBkdAcCbPLxI8Q2gHS81oCEdAoJmmrGR3eXV9lChoBkdAbveOpbUwz2gHS9loCEdAoJmxi1Aqu3V9lChoBkdAcw8f029+PWgHS9ZoCEdAoJoQt6HCXXV9lChoBkdAchlCSA6Mi2gHS8doCEdAoJoZew9q13V9lChoBkdAcBJkiliz9mgHS9toCEdAoJohntfG/HV9lChoBkdAcqnWw/xDs2gHS9xoCEdAoJo5v99+gHV9lChoBkdAcLl4RVZLZmgHS/poCEdAoJo9KEnLJXV9lChoBkdAcIoYODrZ8WgHS8hoCEdAoJpjpzLfUHV9lChoBkdAbqe47Rv3rWgHS99oCEdAoJqVAqur63V9lChoBkdAb7drl/6O52gHS/FoCEdAoJrS42CNCXV9lChoBkdAVDwPatcOb2gHS6RoCEdAoJso7/4qPXV9lChoBkdAbGxFCLMs6WgHS+1oCEdAoJtT7wazeHV9lChoBkdAcigSHM2WIGgHS/FoCEdAoJtl9+gDinV9lChoBkdActjcMmWt2mgHS9BoCEdAoJtl+Vkc0nV9lChoBkdAcEcs1sLv1GgHS+JoCEdAoJuvxH5JsnV9lChoBkdAchN2wmmcfGgHS8VoCEdAoJvLb5/LDHV9lChoBkdAcMM9AX2ugmgHS/loCEdAoJxl0gbIcXV9lChoBkdAcVZGhVU+92gHS9toCEdAoJyBl18stnV9lChoBkdAbkGyQgcLjWgHS9hoCEdAoJyCAhB7eHV9lChoBkdAbueaR6nivWgHS9ZoCEdAoJyl58jRlnV9lChoBkdAcmO3/xUedWgHS+doCEdAoJy5PAO8TXV9lChoBkdAcHSivPkaM2gHS/5oCEdAoJ0dBQemvXV9lChoBkdAcC/LbHp8nmgHS+BoCEdAoJ0x2St/4XV9lChoBkdAcOk7UXpGF2gHS9FoCEdAoJ1K8an753V9lChoBkdAcsJcHnlny2gHTQABaAhHQKCdVd+G47R1fZQoaAZHQHCF6LjxTbZoB0vdaAhHQKCd01l5GBp1fZQoaAZHQFEUPjXFtKtoB0uNaAhHQKCeIn752yN1fZQoaAZHQHH4kKu0TlFoB0vlaAhHQKCeIgK4QSV1fZQoaAZHQHGCisny/bloB0vsaAhHQKCeS47zTWp1fZQoaAZHQHH8JtFa0QdoB0v2aAhHQKCeao5PuXx1fZQoaAZHQHFNu3x4IKNoB0vnaAhHQKCehtG/etV1fZQoaAZHQHMoHCfpUxVoB0vzaAhHQKCeyD4gzP91fZQoaAZHQHFC2pAD7qJoB0vTaAhHQKCfQYu01Il1fZQoaAZHQHIX6ptJnQJoB0veaAhHQKCfQWOZLIx1fZQoaAZHQHLnhtgrpaBoB0vgaAhHQKCfSCo0hvB1fZQoaAZHQG8BfFirksBoB0vhaAhHQKCfgkVN5+p1ZS4="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 492,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
  "n_steps": 1024,
81
  "gamma": 0.999,
82
  "gae_lambda": 0.98,
 
87
  "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
  },
92
  "clip_range_vf": null,
93
  "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
  }
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:795a783a089b7a123067a018f2ed85cb37f9f876ff771bc4af43d527531319d1
3
- size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd157c2ddd40d732e45ff8e273620f70fe29465cbba6bfacc5cb3b6c9d7b7c25
3
+ size 88362
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e5a74176cf3be6f8ac967e1a2cb6e7039c5fe83f9fd590620d2122b6e4e2567e
3
- size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f86adc833acd534e0b7977294b2378c3799578cdd88c32a1644740b2386b9070
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
- size 431
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -1,7 +1,9 @@
1
- OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
2
- Python: 3.8.16
3
- Stable-Baselines3: 1.6.2
4
- PyTorch: 1.13.0+cu116
5
- GPU Enabled: True
6
- Numpy: 1.21.6
7
- Gym: 0.21.0
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 290.56619800301365, "std_reward": 17.7807962533092, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-10T16:46:40.797702"}
 
1
+ {"mean_reward": 273.10569451736353, "std_reward": 19.91331336536812, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-30T19:07:38.455635"}