muntasir2000 commited on
Commit
ecca05a
1 Parent(s): 0ad13f5

Update tokenization_bn.py

Browse files
Files changed (1) hide show
  1. tokenization_bn.py +64 -215
tokenization_bn.py CHANGED
@@ -1,110 +1,81 @@
 
 
 
 
 
 
1
  import os
 
2
  from shutil import copyfile
 
3
  from typing import Any, Dict, List, Optional, Tuple
4
-
5
- import sentencepiece as spm
6
- from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
7
- from transformers.utils import logging
8
-
9
- logger = logging.get_logger(__name__)
10
-
11
- VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
12
-
13
- PRETRAINED_VOCAB_FILES_MAP = {
14
- "vocab_file": {},
15
- "tokenizer_file": {},
16
- }
17
- PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
18
-
19
 
20
  class BNTokenizer(PreTrainedTokenizer):
21
  """
22
- Construct a Yi tokenizer. Based on byte-level Byte-Pair-Encoding.
23
-
24
- Args:
25
- vocab_file (`str`):
26
- Path to the vocabulary file.
27
- """
28
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  vocab_files_names = VOCAB_FILES_NAMES
30
- pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
31
- max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
32
- model_input_names = ["input_ids", "attention_mask"]
33
 
34
- def __init__(
35
- self,
36
- vocab_file,
37
- unk_token="<unk>",
38
- bos_token="<|startoftext|>",
39
- eos_token="<|endoftext|>",
40
- pad_token="<unk>",
41
- sp_model_kwargs: Optional[Dict[str, Any]] = None,
42
- add_bos_token=True,
43
- add_eos_token=False,
44
- clean_up_tokenization_spaces=False,
45
- **kwargs,
46
- ):
47
  self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
48
- bos_token = (
49
- AddedToken(bos_token, lstrip=False, rstrip=False)
50
- if isinstance(bos_token, str)
51
- else bos_token
52
- )
53
- eos_token = (
54
- AddedToken(eos_token, lstrip=False, rstrip=False)
55
- if isinstance(eos_token, str)
56
- else eos_token
57
- )
58
- unk_token = (
59
- AddedToken(unk_token, lstrip=False, rstrip=False)
60
- if isinstance(unk_token, str)
61
- else unk_token
62
- )
63
- pad_token = (
64
- AddedToken(pad_token, lstrip=False, rstrip=False)
65
- if isinstance(pad_token, str)
66
- else pad_token
67
- )
68
  self.vocab_file = vocab_file
69
- self.add_bos_token = add_bos_token
70
- self.add_eos_token = add_eos_token
71
  self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
72
  self.sp_model.Load(vocab_file)
73
- super().__init__(
74
- bos_token=bos_token,
75
- eos_token=eos_token,
76
- unk_token=unk_token,
77
- pad_token=pad_token,
78
- add_bos_token=add_bos_token,
79
- add_eos_token=add_eos_token,
80
- sp_model_kwargs=self.sp_model_kwargs,
81
- clean_up_tokenization_spaces=clean_up_tokenization_spaces,
82
- **kwargs,
83
- )
84
-
85
- def __getstate__(self):
86
- state = self.__dict__.copy()
87
- state["sp_model"] = None
88
- return state
89
-
90
- def __setstate__(self, d):
91
- self.__dict__ = d
92
- self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
93
- self.sp_model.Load(self.vocab_file)
94
 
95
  @property
96
  def vocab_size(self):
97
- """Returns vocab size"""
98
  return self.sp_model.get_piece_size()
99
 
100
  def get_vocab(self):
101
- """Returns vocab as a dict"""
102
  vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
103
  vocab.update(self.added_tokens_encoder)
104
  return vocab
105
 
106
- def _tokenize(self, text):
107
- """Returns a tokenized string."""
 
 
 
 
 
 
 
 
 
 
 
 
108
  return self.sp_model.encode(text, out_type=str)
109
 
110
  def _convert_token_to_id(self, token):
@@ -113,143 +84,21 @@ class BNTokenizer(PreTrainedTokenizer):
113
 
114
  def _convert_id_to_token(self, index):
115
  """Converts an index (integer) in a token (str) using the vocab."""
116
- token = self.sp_model.IdToPiece(index)
117
  return token
118
 
119
  def convert_tokens_to_string(self, tokens):
120
  """Converts a sequence of tokens (string) in a single string."""
121
- current_sub_tokens = []
122
- out_string = ""
123
- prev_is_special = False
124
- for i, token in enumerate(tokens):
125
- # make sure that special tokens are not decoded using sentencepiece model
126
- if token in self.all_special_tokens:
127
- if not prev_is_special and i != 0:
128
- out_string += " "
129
- out_string += self.sp_model.decode(current_sub_tokens) + token
130
- prev_is_special = True
131
- current_sub_tokens = []
132
- else:
133
- current_sub_tokens.append(token)
134
- prev_is_special = False
135
- out_string += self.sp_model.decode(current_sub_tokens)
136
- return out_string
137
 
138
- def save_vocabulary(
139
- self, save_directory, filename_prefix: Optional[str] = None
140
- ) -> Tuple[str]:
141
- """
142
- Save the vocabulary and special tokens file to a directory.
143
-
144
- Args:
145
- save_directory (`str`):
146
- The directory in which to save the vocabulary.
147
-
148
- Returns:
149
- `Tuple(str)`: Paths to the files saved.
150
- """
151
  if not os.path.isdir(save_directory):
152
- logger.error(f"Vocabulary path ({save_directory}) should be a directory")
153
- return
154
- out_vocab_file = os.path.join(
155
- save_directory,
156
- (filename_prefix + "-" if filename_prefix else "")
157
- + VOCAB_FILES_NAMES["vocab_file"],
158
- )
159
-
160
- if os.path.abspath(self.vocab_file) != os.path.abspath(
161
- out_vocab_file
162
- ) and os.path.isfile(self.vocab_file):
163
  copyfile(self.vocab_file, out_vocab_file)
164
  elif not os.path.isfile(self.vocab_file):
165
- with open(out_vocab_file, "wb") as fi:
166
  content_spiece_model = self.sp_model.serialized_model_proto()
167
  fi.write(content_spiece_model)
168
-
169
- return (out_vocab_file,)
170
-
171
- def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
172
- bos_token_id = [self.bos_token_id] if self.add_bos_token else []
173
- eos_token_id = [self.eos_token_id] if self.add_eos_token else []
174
-
175
- output = bos_token_id + token_ids_0 + eos_token_id
176
-
177
- if token_ids_1 is not None:
178
- output = output + bos_token_id + token_ids_1 + eos_token_id
179
-
180
- return output
181
-
182
- def get_special_tokens_mask(
183
- self,
184
- token_ids_0: List[int],
185
- token_ids_1: Optional[List[int]] = None,
186
- already_has_special_tokens: bool = False,
187
- ) -> List[int]:
188
- """
189
- Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
190
- special tokens using the tokenizer `prepare_for_model` method.
191
-
192
- Args:
193
- token_ids_0 (`List[int]`):
194
- List of IDs.
195
- token_ids_1 (`List[int]`, *optional*):
196
- Optional second list of IDs for sequence pairs.
197
- already_has_special_tokens (`bool`, *optional*, defaults to `False`):
198
- Whether or not the token list is already formatted with special tokens for the model.
199
-
200
- Returns:
201
- `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
202
- """
203
- if already_has_special_tokens:
204
- return super().get_special_tokens_mask(
205
- token_ids_0=token_ids_0,
206
- token_ids_1=token_ids_1,
207
- already_has_special_tokens=True,
208
- )
209
-
210
- bos_token_id = [1] if self.add_bos_token else []
211
- eos_token_id = [1] if self.add_eos_token else []
212
-
213
- if token_ids_1 is None:
214
- return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
215
- return (
216
- bos_token_id
217
- + ([0] * len(token_ids_0))
218
- + eos_token_id
219
- + bos_token_id
220
- + ([0] * len(token_ids_1))
221
- + eos_token_id
222
- )
223
-
224
- def create_token_type_ids_from_sequences(
225
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
226
- ) -> List[int]:
227
- """
228
- Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
229
- sequence pair mask has the following format:
230
-
231
- ```
232
- 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
233
- | first sequence | second sequence |
234
- ```
235
-
236
- if token_ids_1 is None, only returns the first portion of the mask (0s).
237
-
238
- Args:
239
- token_ids_0 (`List[int]`):
240
- List of ids.
241
- token_ids_1 (`List[int]`, *optional*):
242
- Optional second list of IDs for sequence pairs.
243
-
244
- Returns:
245
- `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
246
- """
247
- bos_token_id = [self.bos_token_id] if self.add_bos_token else []
248
- eos_token_id = [self.eos_token_id] if self.add_eos_token else []
249
-
250
- output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
251
-
252
- if token_ids_1 is not None:
253
- output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
254
-
255
- return output
 
1
+
2
+ """
3
+ Forked from the file src/transformers/models/bert_generation/tokenization_bert_generation.py from the HuggingFace Transformers library.
4
+ Permalink: https://github.com/huggingface/transformers/blob/04ab5605fbb4ef207b10bf2772d88c53fc242e83/src/transformers/models/bert_generation/tokenization_bert_generation.py
5
+
6
+ """
7
  import os
8
+ import sentencepiece as spm
9
  from shutil import copyfile
10
+ from transformers import PreTrainedTokenizer
11
  from typing import Any, Dict, List, Optional, Tuple
12
+ VOCAB_FILES_NAMES = {'vocab_file': 'tokenizer.model'}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
  class BNTokenizer(PreTrainedTokenizer):
15
  """
16
+ Construct a ReplitLMTokenizer tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
17
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods.
18
+
19
+ Args:
20
+ vocab_file (`str`):
21
+ [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
22
+ contains the vocabulary necessary to instantiate a tokenizer.
23
+ eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
24
+ The end of sequence token.
25
+ bos_token (`str`, *optional*, defaults to `None`):
26
+ The begin of sequence token.
27
+ unk_token (`str`, *optional*, defaults to `"<|unk|>"`):
28
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
29
+ token instead.
30
+ pad_token (`str`, *optional*, defaults to `"<|pad|>"`):
31
+ The token used for padding, for example when batching sequences of different lengths.
32
+ sp_model_kwargs (`dict`, *optional*):
33
+ Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
34
+ SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
35
+ to set:
36
+ - `enable_sampling`: Enable subword regularization.
37
+ - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
38
+ - `nbest_size = {0,1}`: No sampling is performed.
39
+ - `nbest_size > 1`: samples from the nbest_size results.
40
+ - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
41
+ using forward-filtering-and-backward-sampling algorithm.
42
+ - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
43
+ BPE-dropout.
44
+ """
45
  vocab_files_names = VOCAB_FILES_NAMES
46
+ prefix_tokens: List[int] = []
47
+ model_input_names = ['input_ids', 'attention_mask']
 
48
 
49
+ def __init__(self, vocab_file, bos_token=None, eos_token='</s>', unk_token='<unk>', pad_token='<|reserved001|>', sep_token=None, sp_model_kwargs: Optional[Dict[str, Any]]=None, **kwargs) -> None:
 
 
 
 
 
 
 
 
 
 
 
 
50
  self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
51
+ super().__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, sep_token=sep_token, sp_model_kwargs=self.sp_model_kwargs, **kwargs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
  self.vocab_file = vocab_file
 
 
53
  self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
54
  self.sp_model.Load(vocab_file)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
  @property
57
  def vocab_size(self):
 
58
  return self.sp_model.get_piece_size()
59
 
60
  def get_vocab(self):
 
61
  vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
62
  vocab.update(self.added_tokens_encoder)
63
  return vocab
64
 
65
+ def __getstate__(self):
66
+ state = self.__dict__.copy()
67
+ state['sp_model'] = None
68
+ return state
69
+
70
+ def __setstate__(self, d):
71
+ self.__dict__ = d
72
+ if not hasattr(self, 'sp_model_kwargs'):
73
+ self.sp_model_kwargs = {}
74
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
75
+ self.sp_model.load(self.vocab_file)
76
+
77
+ def _tokenize(self, text: str) -> List[str]:
78
+ """Take as input a string and return a list of strings (tokens) for words/sub-words"""
79
  return self.sp_model.encode(text, out_type=str)
80
 
81
  def _convert_token_to_id(self, token):
 
84
 
85
  def _convert_id_to_token(self, index):
86
  """Converts an index (integer) in a token (str) using the vocab."""
87
+ token = self.sp_model.id_to_piece(index)
88
  return token
89
 
90
  def convert_tokens_to_string(self, tokens):
91
  """Converts a sequence of tokens (string) in a single string."""
92
+ return self.sp_model.decode(tokens)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
 
94
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str]=None) -> Tuple[str]:
 
 
 
 
 
 
 
 
 
 
 
 
95
  if not os.path.isdir(save_directory):
96
+ raise ValueError(f'Vocabulary path ({save_directory}) should be a directory')
97
+ out_vocab_file = os.path.join(save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'])
98
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
 
 
 
 
 
 
 
 
99
  copyfile(self.vocab_file, out_vocab_file)
100
  elif not os.path.isfile(self.vocab_file):
101
+ with open(out_vocab_file, 'wb') as fi:
102
  content_spiece_model = self.sp_model.serialized_model_proto()
103
  fi.write(content_spiece_model)
104
+ return (out_vocab_file,)