muntasir2000
commited on
Commit
•
ecca05a
1
Parent(s):
0ad13f5
Update tokenization_bn.py
Browse files- tokenization_bn.py +64 -215
tokenization_bn.py
CHANGED
@@ -1,110 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
|
|
2 |
from shutil import copyfile
|
|
|
3 |
from typing import Any, Dict, List, Optional, Tuple
|
4 |
-
|
5 |
-
import sentencepiece as spm
|
6 |
-
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
7 |
-
from transformers.utils import logging
|
8 |
-
|
9 |
-
logger = logging.get_logger(__name__)
|
10 |
-
|
11 |
-
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
12 |
-
|
13 |
-
PRETRAINED_VOCAB_FILES_MAP = {
|
14 |
-
"vocab_file": {},
|
15 |
-
"tokenizer_file": {},
|
16 |
-
}
|
17 |
-
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
|
18 |
-
|
19 |
|
20 |
class BNTokenizer(PreTrainedTokenizer):
|
21 |
"""
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
vocab_files_names = VOCAB_FILES_NAMES
|
30 |
-
|
31 |
-
|
32 |
-
model_input_names = ["input_ids", "attention_mask"]
|
33 |
|
34 |
-
def __init__(
|
35 |
-
self,
|
36 |
-
vocab_file,
|
37 |
-
unk_token="<unk>",
|
38 |
-
bos_token="<|startoftext|>",
|
39 |
-
eos_token="<|endoftext|>",
|
40 |
-
pad_token="<unk>",
|
41 |
-
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
42 |
-
add_bos_token=True,
|
43 |
-
add_eos_token=False,
|
44 |
-
clean_up_tokenization_spaces=False,
|
45 |
-
**kwargs,
|
46 |
-
):
|
47 |
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
48 |
-
bos_token =
|
49 |
-
AddedToken(bos_token, lstrip=False, rstrip=False)
|
50 |
-
if isinstance(bos_token, str)
|
51 |
-
else bos_token
|
52 |
-
)
|
53 |
-
eos_token = (
|
54 |
-
AddedToken(eos_token, lstrip=False, rstrip=False)
|
55 |
-
if isinstance(eos_token, str)
|
56 |
-
else eos_token
|
57 |
-
)
|
58 |
-
unk_token = (
|
59 |
-
AddedToken(unk_token, lstrip=False, rstrip=False)
|
60 |
-
if isinstance(unk_token, str)
|
61 |
-
else unk_token
|
62 |
-
)
|
63 |
-
pad_token = (
|
64 |
-
AddedToken(pad_token, lstrip=False, rstrip=False)
|
65 |
-
if isinstance(pad_token, str)
|
66 |
-
else pad_token
|
67 |
-
)
|
68 |
self.vocab_file = vocab_file
|
69 |
-
self.add_bos_token = add_bos_token
|
70 |
-
self.add_eos_token = add_eos_token
|
71 |
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
72 |
self.sp_model.Load(vocab_file)
|
73 |
-
super().__init__(
|
74 |
-
bos_token=bos_token,
|
75 |
-
eos_token=eos_token,
|
76 |
-
unk_token=unk_token,
|
77 |
-
pad_token=pad_token,
|
78 |
-
add_bos_token=add_bos_token,
|
79 |
-
add_eos_token=add_eos_token,
|
80 |
-
sp_model_kwargs=self.sp_model_kwargs,
|
81 |
-
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
82 |
-
**kwargs,
|
83 |
-
)
|
84 |
-
|
85 |
-
def __getstate__(self):
|
86 |
-
state = self.__dict__.copy()
|
87 |
-
state["sp_model"] = None
|
88 |
-
return state
|
89 |
-
|
90 |
-
def __setstate__(self, d):
|
91 |
-
self.__dict__ = d
|
92 |
-
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
93 |
-
self.sp_model.Load(self.vocab_file)
|
94 |
|
95 |
@property
|
96 |
def vocab_size(self):
|
97 |
-
"""Returns vocab size"""
|
98 |
return self.sp_model.get_piece_size()
|
99 |
|
100 |
def get_vocab(self):
|
101 |
-
"""Returns vocab as a dict"""
|
102 |
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
103 |
vocab.update(self.added_tokens_encoder)
|
104 |
return vocab
|
105 |
|
106 |
-
def
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
return self.sp_model.encode(text, out_type=str)
|
109 |
|
110 |
def _convert_token_to_id(self, token):
|
@@ -113,143 +84,21 @@ class BNTokenizer(PreTrainedTokenizer):
|
|
113 |
|
114 |
def _convert_id_to_token(self, index):
|
115 |
"""Converts an index (integer) in a token (str) using the vocab."""
|
116 |
-
token = self.sp_model.
|
117 |
return token
|
118 |
|
119 |
def convert_tokens_to_string(self, tokens):
|
120 |
"""Converts a sequence of tokens (string) in a single string."""
|
121 |
-
|
122 |
-
out_string = ""
|
123 |
-
prev_is_special = False
|
124 |
-
for i, token in enumerate(tokens):
|
125 |
-
# make sure that special tokens are not decoded using sentencepiece model
|
126 |
-
if token in self.all_special_tokens:
|
127 |
-
if not prev_is_special and i != 0:
|
128 |
-
out_string += " "
|
129 |
-
out_string += self.sp_model.decode(current_sub_tokens) + token
|
130 |
-
prev_is_special = True
|
131 |
-
current_sub_tokens = []
|
132 |
-
else:
|
133 |
-
current_sub_tokens.append(token)
|
134 |
-
prev_is_special = False
|
135 |
-
out_string += self.sp_model.decode(current_sub_tokens)
|
136 |
-
return out_string
|
137 |
|
138 |
-
def save_vocabulary(
|
139 |
-
self, save_directory, filename_prefix: Optional[str] = None
|
140 |
-
) -> Tuple[str]:
|
141 |
-
"""
|
142 |
-
Save the vocabulary and special tokens file to a directory.
|
143 |
-
|
144 |
-
Args:
|
145 |
-
save_directory (`str`):
|
146 |
-
The directory in which to save the vocabulary.
|
147 |
-
|
148 |
-
Returns:
|
149 |
-
`Tuple(str)`: Paths to the files saved.
|
150 |
-
"""
|
151 |
if not os.path.isdir(save_directory):
|
152 |
-
|
153 |
-
|
154 |
-
out_vocab_file
|
155 |
-
save_directory,
|
156 |
-
(filename_prefix + "-" if filename_prefix else "")
|
157 |
-
+ VOCAB_FILES_NAMES["vocab_file"],
|
158 |
-
)
|
159 |
-
|
160 |
-
if os.path.abspath(self.vocab_file) != os.path.abspath(
|
161 |
-
out_vocab_file
|
162 |
-
) and os.path.isfile(self.vocab_file):
|
163 |
copyfile(self.vocab_file, out_vocab_file)
|
164 |
elif not os.path.isfile(self.vocab_file):
|
165 |
-
with open(out_vocab_file,
|
166 |
content_spiece_model = self.sp_model.serialized_model_proto()
|
167 |
fi.write(content_spiece_model)
|
168 |
-
|
169 |
-
return (out_vocab_file,)
|
170 |
-
|
171 |
-
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
172 |
-
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
173 |
-
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
174 |
-
|
175 |
-
output = bos_token_id + token_ids_0 + eos_token_id
|
176 |
-
|
177 |
-
if token_ids_1 is not None:
|
178 |
-
output = output + bos_token_id + token_ids_1 + eos_token_id
|
179 |
-
|
180 |
-
return output
|
181 |
-
|
182 |
-
def get_special_tokens_mask(
|
183 |
-
self,
|
184 |
-
token_ids_0: List[int],
|
185 |
-
token_ids_1: Optional[List[int]] = None,
|
186 |
-
already_has_special_tokens: bool = False,
|
187 |
-
) -> List[int]:
|
188 |
-
"""
|
189 |
-
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
190 |
-
special tokens using the tokenizer `prepare_for_model` method.
|
191 |
-
|
192 |
-
Args:
|
193 |
-
token_ids_0 (`List[int]`):
|
194 |
-
List of IDs.
|
195 |
-
token_ids_1 (`List[int]`, *optional*):
|
196 |
-
Optional second list of IDs for sequence pairs.
|
197 |
-
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
198 |
-
Whether or not the token list is already formatted with special tokens for the model.
|
199 |
-
|
200 |
-
Returns:
|
201 |
-
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
202 |
-
"""
|
203 |
-
if already_has_special_tokens:
|
204 |
-
return super().get_special_tokens_mask(
|
205 |
-
token_ids_0=token_ids_0,
|
206 |
-
token_ids_1=token_ids_1,
|
207 |
-
already_has_special_tokens=True,
|
208 |
-
)
|
209 |
-
|
210 |
-
bos_token_id = [1] if self.add_bos_token else []
|
211 |
-
eos_token_id = [1] if self.add_eos_token else []
|
212 |
-
|
213 |
-
if token_ids_1 is None:
|
214 |
-
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
215 |
-
return (
|
216 |
-
bos_token_id
|
217 |
-
+ ([0] * len(token_ids_0))
|
218 |
-
+ eos_token_id
|
219 |
-
+ bos_token_id
|
220 |
-
+ ([0] * len(token_ids_1))
|
221 |
-
+ eos_token_id
|
222 |
-
)
|
223 |
-
|
224 |
-
def create_token_type_ids_from_sequences(
|
225 |
-
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
226 |
-
) -> List[int]:
|
227 |
-
"""
|
228 |
-
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
229 |
-
sequence pair mask has the following format:
|
230 |
-
|
231 |
-
```
|
232 |
-
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
233 |
-
| first sequence | second sequence |
|
234 |
-
```
|
235 |
-
|
236 |
-
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
237 |
-
|
238 |
-
Args:
|
239 |
-
token_ids_0 (`List[int]`):
|
240 |
-
List of ids.
|
241 |
-
token_ids_1 (`List[int]`, *optional*):
|
242 |
-
Optional second list of IDs for sequence pairs.
|
243 |
-
|
244 |
-
Returns:
|
245 |
-
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
246 |
-
"""
|
247 |
-
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
248 |
-
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
249 |
-
|
250 |
-
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
|
251 |
-
|
252 |
-
if token_ids_1 is not None:
|
253 |
-
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
254 |
-
|
255 |
-
return output
|
|
|
1 |
+
|
2 |
+
"""
|
3 |
+
Forked from the file src/transformers/models/bert_generation/tokenization_bert_generation.py from the HuggingFace Transformers library.
|
4 |
+
Permalink: https://github.com/huggingface/transformers/blob/04ab5605fbb4ef207b10bf2772d88c53fc242e83/src/transformers/models/bert_generation/tokenization_bert_generation.py
|
5 |
+
|
6 |
+
"""
|
7 |
import os
|
8 |
+
import sentencepiece as spm
|
9 |
from shutil import copyfile
|
10 |
+
from transformers import PreTrainedTokenizer
|
11 |
from typing import Any, Dict, List, Optional, Tuple
|
12 |
+
VOCAB_FILES_NAMES = {'vocab_file': 'tokenizer.model'}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
class BNTokenizer(PreTrainedTokenizer):
|
15 |
"""
|
16 |
+
Construct a ReplitLMTokenizer tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
|
17 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
vocab_file (`str`):
|
21 |
+
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
|
22 |
+
contains the vocabulary necessary to instantiate a tokenizer.
|
23 |
+
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
24 |
+
The end of sequence token.
|
25 |
+
bos_token (`str`, *optional*, defaults to `None`):
|
26 |
+
The begin of sequence token.
|
27 |
+
unk_token (`str`, *optional*, defaults to `"<|unk|>"`):
|
28 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
29 |
+
token instead.
|
30 |
+
pad_token (`str`, *optional*, defaults to `"<|pad|>"`):
|
31 |
+
The token used for padding, for example when batching sequences of different lengths.
|
32 |
+
sp_model_kwargs (`dict`, *optional*):
|
33 |
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
34 |
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
35 |
+
to set:
|
36 |
+
- `enable_sampling`: Enable subword regularization.
|
37 |
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
38 |
+
- `nbest_size = {0,1}`: No sampling is performed.
|
39 |
+
- `nbest_size > 1`: samples from the nbest_size results.
|
40 |
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
41 |
+
using forward-filtering-and-backward-sampling algorithm.
|
42 |
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
43 |
+
BPE-dropout.
|
44 |
+
"""
|
45 |
vocab_files_names = VOCAB_FILES_NAMES
|
46 |
+
prefix_tokens: List[int] = []
|
47 |
+
model_input_names = ['input_ids', 'attention_mask']
|
|
|
48 |
|
49 |
+
def __init__(self, vocab_file, bos_token=None, eos_token='</s>', unk_token='<unk>', pad_token='<|reserved001|>', sep_token=None, sp_model_kwargs: Optional[Dict[str, Any]]=None, **kwargs) -> None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
51 |
+
super().__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, sep_token=sep_token, sp_model_kwargs=self.sp_model_kwargs, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
self.vocab_file = vocab_file
|
|
|
|
|
53 |
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
54 |
self.sp_model.Load(vocab_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
@property
|
57 |
def vocab_size(self):
|
|
|
58 |
return self.sp_model.get_piece_size()
|
59 |
|
60 |
def get_vocab(self):
|
|
|
61 |
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
62 |
vocab.update(self.added_tokens_encoder)
|
63 |
return vocab
|
64 |
|
65 |
+
def __getstate__(self):
|
66 |
+
state = self.__dict__.copy()
|
67 |
+
state['sp_model'] = None
|
68 |
+
return state
|
69 |
+
|
70 |
+
def __setstate__(self, d):
|
71 |
+
self.__dict__ = d
|
72 |
+
if not hasattr(self, 'sp_model_kwargs'):
|
73 |
+
self.sp_model_kwargs = {}
|
74 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
75 |
+
self.sp_model.load(self.vocab_file)
|
76 |
+
|
77 |
+
def _tokenize(self, text: str) -> List[str]:
|
78 |
+
"""Take as input a string and return a list of strings (tokens) for words/sub-words"""
|
79 |
return self.sp_model.encode(text, out_type=str)
|
80 |
|
81 |
def _convert_token_to_id(self, token):
|
|
|
84 |
|
85 |
def _convert_id_to_token(self, index):
|
86 |
"""Converts an index (integer) in a token (str) using the vocab."""
|
87 |
+
token = self.sp_model.id_to_piece(index)
|
88 |
return token
|
89 |
|
90 |
def convert_tokens_to_string(self, tokens):
|
91 |
"""Converts a sequence of tokens (string) in a single string."""
|
92 |
+
return self.sp_model.decode(tokens)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str]=None) -> Tuple[str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
if not os.path.isdir(save_directory):
|
96 |
+
raise ValueError(f'Vocabulary path ({save_directory}) should be a directory')
|
97 |
+
out_vocab_file = os.path.join(save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'])
|
98 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
copyfile(self.vocab_file, out_vocab_file)
|
100 |
elif not os.path.isfile(self.vocab_file):
|
101 |
+
with open(out_vocab_file, 'wb') as fi:
|
102 |
content_spiece_model = self.sp_model.serialized_model_proto()
|
103 |
fi.write(content_spiece_model)
|
104 |
+
return (out_vocab_file,)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|