model1 / scripts /extract_mm_projector.py
multitensor's picture
Upload folder using huggingface_hub
bbfa6f6 verified
"""
This is just a utility that I use to extract the projector for quantized models.
It is NOT necessary at all to train, or run inference/serve demos.
Use this script ONLY if you fully understand its implications.
"""
import os
import argparse
import torch
import json
from collections import defaultdict
def parse_args():
parser = argparse.ArgumentParser(description='Extract MMProjector weights')
parser.add_argument('--model-path', type=str, help='model folder')
parser.add_argument('--output', type=str, help='output file')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
keys_to_match = ['mm_projector']
ckpt_to_key = defaultdict(list)
try:
model_indices = json.load(open(os.path.join(args.model_path, 'pytorch_model.bin.index.json')))
for k, v in model_indices['weight_map'].items():
if any(key_match in k for key_match in keys_to_match):
ckpt_to_key[v].append(k)
except FileNotFoundError:
# Smaller models or model checkpoints saved by DeepSpeed.
v = 'pytorch_model.bin'
for k in torch.load(os.path.join(args.model_path, v), map_location='cpu').keys():
if any(key_match in k for key_match in keys_to_match):
ckpt_to_key[v].append(k)
loaded_weights = {}
for ckpt_name, weight_keys in ckpt_to_key.items():
ckpt = torch.load(os.path.join(args.model_path, ckpt_name), map_location='cpu')
for k in weight_keys:
loaded_weights[k] = ckpt[k]
torch.save(loaded_weights, args.output)